Exploring the landscape of machine learning-aided research in biofuels and biodiesel: A bibliometric analysis

Avinash Alagumalai, Hua Song
{"title":"Exploring the landscape of machine learning-aided research in biofuels and biodiesel: A bibliometric analysis","authors":"Avinash Alagumalai,&nbsp;Hua Song","doi":"10.1016/j.gerr.2024.100089","DOIUrl":null,"url":null,"abstract":"<div><p>This bibliometric analysis explores machine learning applications in biofuels and biodiesel research using Elsevier's Scopus database from 2013 to 2023. The research employs co-authorship, co-occurrence, citation, and co-citation analyses with fractional counting. Results indicate a significant rise in publications. Prominent funding agencies along this field include the National Natural Science Foundation of China, Brazil's Conselho Nacional de Desenvolvimento Científico e Tecnológico and the U.S. Department of Energy. Co-authorship analysis reveals contributions from 268 authors across 951 organizations in 71 countries, with strong collaboration in Asia. Citation analysis shows that 95% of articles have received at least one citation, with China and the United States leading in citation counts. This study highlights the interdisciplinary and collaborative nature of machine learning research in biofuels and biodiesel, driven by substantial contributions from key funding bodies and researchers worldwide.</p></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 3","pages":"Article 100089"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949720524000432/pdfft?md5=3bd0ddc7356e6e15454b6d20f26b6a71&pid=1-s2.0-S2949720524000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This bibliometric analysis explores machine learning applications in biofuels and biodiesel research using Elsevier's Scopus database from 2013 to 2023. The research employs co-authorship, co-occurrence, citation, and co-citation analyses with fractional counting. Results indicate a significant rise in publications. Prominent funding agencies along this field include the National Natural Science Foundation of China, Brazil's Conselho Nacional de Desenvolvimento Científico e Tecnológico and the U.S. Department of Energy. Co-authorship analysis reveals contributions from 268 authors across 951 organizations in 71 countries, with strong collaboration in Asia. Citation analysis shows that 95% of articles have received at least one citation, with China and the United States leading in citation counts. This study highlights the interdisciplinary and collaborative nature of machine learning research in biofuels and biodiesel, driven by substantial contributions from key funding bodies and researchers worldwide.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索生物燃料和生物柴油领域机器学习辅助研究的前景:文献计量分析
本文献计量学分析利用爱思唯尔的 Scopus 数据库,探讨了机器学习在生物燃料和生物柴油研究中的应用,时间跨度为 2013 年至 2023 年。研究采用了共同作者、共同出现、引用和共同引用分析以及分数计数。结果表明,论文数量大幅增加。该领域的主要资助机构包括中国国家自然科学基金委员会、巴西国家科学与技术发展委员会和美国能源部。合著分析显示,共有来自 71 个国家 951 个组织的 268 位作者发表了论文,其中亚洲的合作尤为紧密。引用分析表明,95% 的文章至少被引用过一次,其中中国和美国的引用次数最多。这项研究凸显了生物燃料和生物柴油领域机器学习研究的跨学科性和合作性,这主要得益于全球主要资助机构和研究人员的大量贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric study of the decomposition of methane for COx-free H2 and high valued carbon using Ni-based catalyst via machine-learning simulation Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes Using machine learning methods for long-term technical and economic evaluation of wind power plants Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1