Using machine learning methods for long-term technical and economic evaluation of wind power plants

Ali Omidkar, Razieh Es'haghian, Hua Song
{"title":"Using machine learning methods for long-term technical and economic evaluation of wind power plants","authors":"Ali Omidkar,&nbsp;Razieh Es'haghian,&nbsp;Hua Song","doi":"10.1016/j.gerr.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>The depletion of hydrocarbon reserves and the impact of global warming have posed significant challenges to the continued use of fossil fuels. Consequently, renewable energy sources have garnered substantial attention, with some countries now deriving a significant portion of their total energy needs from these alternatives. Among renewable sources, wind energy has been recognized as one of the most accessible and clean. However, it is imperative to evaluate wind power plants both technically and economically. This involves calculating the levelized cost of energy in comparison to fossil-based energy sources and predicting the minimum and maximum energy output over the long term. Achieving this requires long-term forecasts of wind speeds at specific locations, which involve complex mathematical modeling and computations typically performed by supercomputers. In this study, a data-driven machine learning model has been employed to predict wind speeds in Calgary over a 25-year period with minimal CPU time. Throughout the power plant's operational life, the optimal model was also used to calculate the annual energy production. The hybrid CNN-LSTM model demonstrated superior accuracy based on model accuracy metrics. Consequently, the levelized cost of energy produced by the plant was calculated at $0.09 per kWh, which is competitive within the Canadian electricity market. The investment reached a breakeven point in approximately six years, which is deemed acceptable.</div></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"3 1","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720525000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The depletion of hydrocarbon reserves and the impact of global warming have posed significant challenges to the continued use of fossil fuels. Consequently, renewable energy sources have garnered substantial attention, with some countries now deriving a significant portion of their total energy needs from these alternatives. Among renewable sources, wind energy has been recognized as one of the most accessible and clean. However, it is imperative to evaluate wind power plants both technically and economically. This involves calculating the levelized cost of energy in comparison to fossil-based energy sources and predicting the minimum and maximum energy output over the long term. Achieving this requires long-term forecasts of wind speeds at specific locations, which involve complex mathematical modeling and computations typically performed by supercomputers. In this study, a data-driven machine learning model has been employed to predict wind speeds in Calgary over a 25-year period with minimal CPU time. Throughout the power plant's operational life, the optimal model was also used to calculate the annual energy production. The hybrid CNN-LSTM model demonstrated superior accuracy based on model accuracy metrics. Consequently, the levelized cost of energy produced by the plant was calculated at $0.09 per kWh, which is competitive within the Canadian electricity market. The investment reached a breakeven point in approximately six years, which is deemed acceptable.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric study of the decomposition of methane for COx-free H2 and high valued carbon using Ni-based catalyst via machine-learning simulation Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes Using machine learning methods for long-term technical and economic evaluation of wind power plants Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1