Mass transport driving forces under electric current in the liquid Sn-Zn system

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-09-03 DOI:10.1016/j.scriptamat.2024.116349
Jean-Philippe Monchoux
{"title":"Mass transport driving forces under electric current in the liquid Sn-Zn system","authors":"Jean-Philippe Monchoux","doi":"10.1016/j.scriptamat.2024.116349","DOIUrl":null,"url":null,"abstract":"<div><p>Significant effects of electric currents on mass transport in liquid metals have been observed for long, but the origin of the corresponding driving forces remains unclear in the literature. Without current, two driving forces induce mass transport in liquid metals. (i) A chemical force, coming from concentration gradients. In that case, mass transport occurs by diffusion. (ii) A physical force, resulting from density gradients thermally and/or chemically induced. Here, mass transport occurs by thermal and/or solutal convection. Under electric currents, these driving forces are modified, either by electrostatic or magnetic forces, the corresponding mechanisms being referred to as electroconvection and magnetoconvection, respectively. However, these mechanisms cannot easily be distinguished from each other, leading to confusion in literature. Here, it has been shown that, in the liquid Sn-Zn system, the driving force induced by 500–1000 A/cm<sup>2</sup> electric current densities is magnetic rather than electrostatic, the mechanism being therefore magnetoconvection.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116349"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359646224003841/pdfft?md5=2300451f648aed5b1d0eaffabc8241e5&pid=1-s2.0-S1359646224003841-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003841","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Significant effects of electric currents on mass transport in liquid metals have been observed for long, but the origin of the corresponding driving forces remains unclear in the literature. Without current, two driving forces induce mass transport in liquid metals. (i) A chemical force, coming from concentration gradients. In that case, mass transport occurs by diffusion. (ii) A physical force, resulting from density gradients thermally and/or chemically induced. Here, mass transport occurs by thermal and/or solutal convection. Under electric currents, these driving forces are modified, either by electrostatic or magnetic forces, the corresponding mechanisms being referred to as electroconvection and magnetoconvection, respectively. However, these mechanisms cannot easily be distinguished from each other, leading to confusion in literature. Here, it has been shown that, in the liquid Sn-Zn system, the driving force induced by 500–1000 A/cm2 electric current densities is magnetic rather than electrostatic, the mechanism being therefore magnetoconvection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液态锡锌体系中电流作用下的质量输运驱动力
人们很早就观察到电流对液态金属中质量输运的显著影响,但相应驱动力的来源在文献中仍不清楚。在没有电流的情况下,液态金属中的质量迁移有两种驱动力。(i) 来自浓度梯度的化学力。在这种情况下,质量迁移是通过扩散实现的。(ii) 物理力,由热力和/或化学力引起的密度梯度产生。在这种情况下,质量传输是通过热对流和/或溶质对流实现的。在电流作用下,这些驱动力会被静电力或磁力改变,相应的机制分别称为电对流和磁对流。然而,这两种机制不易区分,导致文献中的混淆。这里的研究表明,在液态 Sn-Zn 体系中,500-1000 A/cm2 电流密度诱导的驱动力是磁力而不是静电力,因此其机制是磁对流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Effect of B4C addition on the microstructure and mechanical properties of 304L austenitic stainless steel fabricated using laser powder bed fusion Modelling the evolution of microstructural bands in a martensite/austenite Q&P-processed stainless steel Editorial Board Strain glass state in Ni50.3Ti29.7Hf20 high-temperature shape memory alloy An in-situ Raman spectroscopy investigation of the oxidation of proton irradiated and cold-worked 304L stainless steel in oxygenated water at 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1