Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology

IF 1.6 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Radio Science Pub Date : 2024-08-01 DOI:10.1029/2024RS007965
Amir Hossein Haghparast;Pejman Rezaei
{"title":"Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology","authors":"Amir Hossein Haghparast;Pejman Rezaei","doi":"10.1029/2024RS007965","DOIUrl":null,"url":null,"abstract":"In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S\n<inf>11</inf>\n| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663900/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S 11 | < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用沟槽间隙波导技术的小型化宽带圆极化喇叭天线
本研究提出了一种基于间隙波导(GW)技术的 K 波段宽带圆极化(CP)H 平面喇叭天线。该天线由两个未连接的金属平面组成。为了产生宽带 CP 辐射,主要采用了两种方法。首先,在喇叭前面增加了两个对顶锥形板(ATP)。ATP 经过精心设计,具有不同的极化方向。通过这种技术,可以制备正交电场。然后,通过在两块内板上靠近孔径中心的位置嵌入三个金属方针,完全改善了拟建喇叭的阻抗带宽(BW)和 CP 辐射带宽。当目标 |S11| < -10 dB 时,其 BW 为 18-28 GHz。此外,峰值增益在 11.5 和 13 dB 之间波动。该天线可提供约 28.5% (20-26 GHz)的 3 dB 极化轴向比频带宽度。总辐射效率高于 94%。为了验证设计,对所提出的结构进行了制造和测试。所提议的喇叭天线的测量结果与模拟结果之间具有适当的一致性。其微型化的尺寸、简便廉价的制造工艺和宽带 CP 能力使其成为宽带通信系统的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radio Science
Radio Science 工程技术-地球化学与地球物理
CiteScore
3.30
自引率
12.50%
发文量
112
审稿时长
1 months
期刊介绍: Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.
期刊最新文献
Front matters Exploring AI progress in GNSS remote sensing: A deep learning based framework for real-time detection of earthquake and tsunami induced ionospheric perturbations Low-profile miniaturized wideband circularly polarized monopole and MIMO antennas using characteristic mode analysis for wireless communication A simple noncontact soil moisture probe for weather and climate applications Observation and analysis of anomalous terrestrial diffraction as a mechanism of electromagnetic precursors of earthquakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1