Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scattering

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-09-03 DOI:10.1038/s42005-024-01776-6
Paweł Ordyna, Carsten Bähtz, Erik Brambrink, Michael Bussmann, Alejandro Laso Garcia, Marco Garten, Lennart Gaus, Sebastian Göde, Jörg Grenzer, Christian Gutt, Hauke Höppner, Lingen Huang, Uwe Hübner, Oliver Humphries, Brian Edward Marré, Josefine Metzkes-Ng, Thomas Miethlinger, Motoaki Nakatsutsumi, Özgül Öztürk, Xiayun Pan, Franziska Paschke-Brühl, Alexander Pelka, Irene Prencipe, Thomas R. Preston, Lisa Randolph, Hans-Peter Schlenvoigt, Jan-Patrick Schwinkendorf, Michal Šmíd, Sebastian Starke, Radka Štefaníková, Erik Thiessenhusen, Toma Toncian, Karl Zeil, Ulrich Schramm, Thomas E. Cowan, Thomas Kluge
{"title":"Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scattering","authors":"Paweł Ordyna, Carsten Bähtz, Erik Brambrink, Michael Bussmann, Alejandro Laso Garcia, Marco Garten, Lennart Gaus, Sebastian Göde, Jörg Grenzer, Christian Gutt, Hauke Höppner, Lingen Huang, Uwe Hübner, Oliver Humphries, Brian Edward Marré, Josefine Metzkes-Ng, Thomas Miethlinger, Motoaki Nakatsutsumi, Özgül Öztürk, Xiayun Pan, Franziska Paschke-Brühl, Alexander Pelka, Irene Prencipe, Thomas R. Preston, Lisa Randolph, Hans-Peter Schlenvoigt, Jan-Patrick Schwinkendorf, Michal Šmíd, Sebastian Starke, Radka Štefaníková, Erik Thiessenhusen, Toma Toncian, Karl Zeil, Ulrich Schramm, Thomas E. Cowan, Thomas Kluge","doi":"10.1038/s42005-024-01776-6","DOIUrl":null,"url":null,"abstract":"Ultra-intense lasers that ionize atoms and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but X-ray scattering at keV photon energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Here, we perform such experiment on laser-driven flat silicon membranes that shows the development of structure with a dominant scale of 60 nm in the plane of the laser axis and laser polarization, and 95 nm in the vertical direction with a growth rate faster than 0.1 fs−1. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced plasma density development, indicating the excitation of plasmons and a filamentation instability. Particle-in-cell simulations confirm that these signals are due to an oblique two-stream filamentation instability. These findings provide new insight into ultra-fast instability and heating processes in solids under extreme conditions at the nanometer level with possible implications for laser particle acceleration, inertial confinement fusion, and laboratory astrophysics. Ultrafast relativistic plasma instabilities accompany and influence laser matter interactions that accelerate particlebeams with potential applications in e.g radiotherapy or fussion fast ignition scenarios. Here, the authors use Small Angle X-ray Scattering to observe such instabilities on a femtosecond, tens of nanometer scale in solids, and draw conclusions on the underlying plasma dynamics.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01776-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01776-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-intense lasers that ionize atoms and accelerate electrons in solids to near the speed of light can lead to kinetic instabilities that alter the laser absorption and subsequent electron transport, isochoric heating, and ion acceleration. These instabilities can be difficult to characterize, but X-ray scattering at keV photon energies allows for their visualization with femtosecond temporal resolution on the few nanometer mesoscale. Here, we perform such experiment on laser-driven flat silicon membranes that shows the development of structure with a dominant scale of 60 nm in the plane of the laser axis and laser polarization, and 95 nm in the vertical direction with a growth rate faster than 0.1 fs−1. Combining the XFEL experiments with simulations provides a complete picture of the structural evolution of ultra-fast laser-induced plasma density development, indicating the excitation of plasmons and a filamentation instability. Particle-in-cell simulations confirm that these signals are due to an oblique two-stream filamentation instability. These findings provide new insight into ultra-fast instability and heating processes in solids under extreme conditions at the nanometer level with possible implications for laser particle acceleration, inertial confinement fusion, and laboratory astrophysics. Ultrafast relativistic plasma instabilities accompany and influence laser matter interactions that accelerate particlebeams with potential applications in e.g radiotherapy or fussion fast ignition scenarios. Here, the authors use Small Angle X-ray Scattering to observe such instabilities on a femtosecond, tens of nanometer scale in solids, and draw conclusions on the underlying plasma dynamics.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 X 射线散射观察激光驱动固体中的质子和超快动力学不稳定性
超强激光可将固体中的原子电离和电子加速到接近光速,从而导致动力学不稳定性,改变激光吸收和随后的电子传输、等速加热和离子加速。这些不稳定性可能难以表征,但在 keV 光子能量下的 X 射线散射可以在几纳米的中尺度上以飞秒级的时间分辨率将其可视化。在这里,我们在激光驱动的平面硅膜上进行了这样的实验,结果表明,在激光轴和激光偏振平面上,结构的主要尺度为 60 纳米,在垂直方向上为 95 纳米,其增长速度快于 0.1 fs-1。将 XFEL 实验与模拟相结合,可以全面了解超快激光诱导等离子体密度发展的结构演变,表明等离子体的激发和丝状不稳定性。粒子间模拟证实,这些信号是由斜双流丝状不稳定性引起的。这些发现为纳米级极端条件下固体中的超快不稳定性和加热过程提供了新的视角,可能对激光粒子加速、惯性约束聚变和实验室天体物理学产生影响。超快相对论等离子体不稳定性伴随并影响着激光物质相互作用,从而加速粒子束,并有可能应用于放射治疗或冲击快速点火等场景。在这里,作者利用小角 X 射线散射观测了固体中飞秒级、数十纳米级的不稳定性,并得出了有关潜在等离子体动力学的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Topological transition in filamentous cyanobacteria: from motion to structure Benchmarking the optimization of optical machines with the planted solutions Spontaneous flows and quantum analogies in heterogeneous active nematic films Quantum switch instabilities with an open control Time persistence of climate and carbon flux networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1