{"title":"Metasurface Enabled Multi‐Target and Multi‐Wavelength Diffraction Neural Networks","authors":"Haoxiang Chi, Xiaofei Zang, Teng Zhang, Guannan Wang, Zhiyuan Fan, Yiming Zhu, Xianzhong Chen, Songlin Zhuang","doi":"10.1002/lpor.202401178","DOIUrl":null,"url":null,"abstract":"Benefiting from low power consumption and high processing speed, there is a growing interest in diffraction neural networks (DNNs), which are typically showcased with 3D printing devices, leading to large volumes, high costs, and low levels of integration. Metasurfaces can desirably manipulate wavefronts of electromagnetic waves, providing a compact platform for mimicking DNNs with novel functions. Although multi‐wavelength and multi‐target recognition provides a richer and more detailed understanding of complex environments, existing architectures are primarily trained to classify a single target at a specific wavelength. A metasurface approach is proposed to design multiplexed DNNs that can classify multiple targets and spatial sequences across various wavelengths in multiple channels. To realize multi‐task processing, the dielectric metasurface is designed based on phase and wavelength multiplexing, which can integrate multi‐target DNNs with different tasks such as operating at distinct wavelengths and classifying diverse targets. The efficacy of this method is exemplified through the numerical simulation and experimental demonstration of recognizing a single target with two wavelengths, two targets at a single wavelength, and two targets at dual wavelengths. This compact metasurface approach enables the design of multi‐target and multi‐wavelength DNNs, opening a new window to develop massively parallel processing and versatile artificial intelligence systems.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401178","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Benefiting from low power consumption and high processing speed, there is a growing interest in diffraction neural networks (DNNs), which are typically showcased with 3D printing devices, leading to large volumes, high costs, and low levels of integration. Metasurfaces can desirably manipulate wavefronts of electromagnetic waves, providing a compact platform for mimicking DNNs with novel functions. Although multi‐wavelength and multi‐target recognition provides a richer and more detailed understanding of complex environments, existing architectures are primarily trained to classify a single target at a specific wavelength. A metasurface approach is proposed to design multiplexed DNNs that can classify multiple targets and spatial sequences across various wavelengths in multiple channels. To realize multi‐task processing, the dielectric metasurface is designed based on phase and wavelength multiplexing, which can integrate multi‐target DNNs with different tasks such as operating at distinct wavelengths and classifying diverse targets. The efficacy of this method is exemplified through the numerical simulation and experimental demonstration of recognizing a single target with two wavelengths, two targets at a single wavelength, and two targets at dual wavelengths. This compact metasurface approach enables the design of multi‐target and multi‐wavelength DNNs, opening a new window to develop massively parallel processing and versatile artificial intelligence systems.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.