VEGFR1 TK signaling protects the lungs against LPS-induced injury by suppressing the activity of alveolar macrophages and enhancing the anti-inflammatory function of monocyte-derived macrophages
Mayuko Osada , Atsushi Yamashita , Seishiro Akinaga , Kanako Hosono , Yoshiya Ito , Masabumi Shibuya , Yasushi Asari , Hideki Amano
{"title":"VEGFR1 TK signaling protects the lungs against LPS-induced injury by suppressing the activity of alveolar macrophages and enhancing the anti-inflammatory function of monocyte-derived macrophages","authors":"Mayuko Osada , Atsushi Yamashita , Seishiro Akinaga , Kanako Hosono , Yoshiya Ito , Masabumi Shibuya , Yasushi Asari , Hideki Amano","doi":"10.1016/j.taap.2024.117083","DOIUrl":null,"url":null,"abstract":"<div><p>Acute lung injury (ALI) is characterized by hyperinflammation followed by vascular leakage and respiratory failure. Vascular endothelial growth factor (VEGF)-A is critical for capillary permeability; however, the role of VEGF receptor 1 (VEGFR1) signaling in ALI progression remains unclear. Here, we show that deletion of VEGFR1 tyrosine kinase (TK) signaling in mice exacerbates lipopolysaccharide (LPS)-induced ALI as evidenced by excessive pro-inflammatory cytokine production and interleukin(IL)-1β-producing neutrophil recruitment to inflamed lung tissues. ALI development involves reduced alveolar macrophage (AM) levels and recruitment of monocyte-derived macrophages (MDMs) in a VEGFR1 TK-dependent manner. VEGFR1 TK signaling reduced pro-inflammatory cytokine levels in cultured AMs. VEGFR1 TK-expressing MDMs displayed an anti-inflammatory macrophage phenotype. Additionally, the transplantation of VEGFR1 TK-expressing bone marrow (BM)-derived macrophages into VEGFR1 TK-deficient mice reduced lung inflammation. Treatment with placental growth factor (PlGF), an agonist for VEGFR1, protected the lung against LPS-induced ALI associated with increased MDMs. These results suggest that VEGFR1 TK signaling prevents LPS-induced ALI by suppressing the pro-inflammatory activity of AMs and enhancing the anti-inflammatory function of MDMs.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0041008X24002813/pdfft?md5=80a59cf3d52cf1405154fbc081de2b6e&pid=1-s2.0-S0041008X24002813-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002813","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is characterized by hyperinflammation followed by vascular leakage and respiratory failure. Vascular endothelial growth factor (VEGF)-A is critical for capillary permeability; however, the role of VEGF receptor 1 (VEGFR1) signaling in ALI progression remains unclear. Here, we show that deletion of VEGFR1 tyrosine kinase (TK) signaling in mice exacerbates lipopolysaccharide (LPS)-induced ALI as evidenced by excessive pro-inflammatory cytokine production and interleukin(IL)-1β-producing neutrophil recruitment to inflamed lung tissues. ALI development involves reduced alveolar macrophage (AM) levels and recruitment of monocyte-derived macrophages (MDMs) in a VEGFR1 TK-dependent manner. VEGFR1 TK signaling reduced pro-inflammatory cytokine levels in cultured AMs. VEGFR1 TK-expressing MDMs displayed an anti-inflammatory macrophage phenotype. Additionally, the transplantation of VEGFR1 TK-expressing bone marrow (BM)-derived macrophages into VEGFR1 TK-deficient mice reduced lung inflammation. Treatment with placental growth factor (PlGF), an agonist for VEGFR1, protected the lung against LPS-induced ALI associated with increased MDMs. These results suggest that VEGFR1 TK signaling prevents LPS-induced ALI by suppressing the pro-inflammatory activity of AMs and enhancing the anti-inflammatory function of MDMs.