Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY PLoS Genetics Pub Date : 2024-09-04 eCollection Date: 2024-09-01 DOI:10.1371/journal.pgen.1011384
Nadiia Pozhydaieva, Franziska Anna Billau, Maik Wolfram-Schauerte, Adán Andrés Ramírez Rojas, Nicole Paczia, Daniel Schindler, Katharina Höfer
{"title":"Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications.","authors":"Nadiia Pozhydaieva, Franziska Anna Billau, Maik Wolfram-Schauerte, Adán Andrés Ramírez Rojas, Nicole Paczia, Daniel Schindler, Katharina Höfer","doi":"10.1371/journal.pgen.1011384","DOIUrl":null,"url":null,"abstract":"<p><p>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 9","pages":"e1011384"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011384","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间表观基因组调控可实现高效的噬菌体工程和噬菌体 DNA 修饰功能分析。
噬菌体在医疗和生物技术应用中大有可为。因此,全面了解噬菌体的感染机制至关重要。CRISPR-Cas 系统提供了一种通过特定位点的噬菌体诱变来探索这些机制的方法。然而,噬菌体可以通过广泛的 DNA 修饰(如胞嘧啶糖基化)来抵抗 Cas 介导的切割,从而阻碍诱变效率。我们的研究利用真核生物酶 NgTET 暂时减少噬菌体 DNA 修饰,促进 Cas 核酸酶的切割,提高诱变效率。这种方法能实现精确的 DNA 靶向和无缝的点突变整合,例如使对噬菌体感染至关重要的特定 ADP 核糖转移酶失活。此外,通过在时间上去除 DNA 修饰,我们阐明了这些修饰对 T4 噬菌体感染的影响,而无需删除基因。我们的研究结果提供了一种研究噬菌体表观基因组功能的策略,并简化了带有胞嘧啶 DNA 修饰的噬菌体工程学研究。所描述的噬菌体表观基因组的时间调控对合成生物学和基础研究都很有价值,可以通过产生突变体来理解噬菌体的感染机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
期刊最新文献
Contact-dependent growth inhibition (CDI) systems deploy a large family of polymorphic ionophoric toxins for inter-bacterial competition. GWAS and 3D chromatin mapping identifies multicancer risk genes associated with hormone-dependent cancers. Sex and neo-sex chromosome evolution in beetles. A high-resolution haplotype collection uncovers somatic hybridization, recombination and intercontinental movement in oat crown rust. Protein phosphatase 1 catalytic subunit gamma is a causative gene for meat lightness and redness.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1