Pan Yang, Hui Wang, Xiaomeng Wu, Shupei Xiao, Xuan Zheng, Yan You, Shaojun Zhang, Ye Wu
{"title":"Long-term plume-chasing measurements: Emission characteristics and spatial patterns of heavy-duty trucks in a megacity.","authors":"Pan Yang, Hui Wang, Xiaomeng Wu, Shupei Xiao, Xuan Zheng, Yan You, Shaojun Zhang, Ye Wu","doi":"10.1016/j.envpol.2024.124819","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing the emissions of heavy-duty diesel trucks (HDDTs) is crucial for managing air quality in megacities, especially concerning nitrogen oxides (NO<sub>X</sub>) and black carbon (BC). This study employed mobile plume chasing to monitor the real-world emissions of over 7778 HDDTs in Shenzhen. The findings indicate that the real-world NO<sub>X</sub> emission factors (EF) of China IV trucks did not differ significantly from those of China III, whereas China V and VI vehicles demonstrated fleet-averaged reductions of 27% and 85%, respectively. For China V, a significant decrease in the NO<sub>X</sub> EF for HDDTs registered after 2017 was attributed to the installation of advanced aftertreatment systems, including diesel oxidation catalysts (DOC) and Diesel Particle Filters (DPF), along with selective catalytic reduction (SCR). These technologies led to an average reduction of 42% in NO<sub>X</sub> and 61% in BC emissions. Seasonal variations were pronounced, with winter (∼20 °C) NO<sub>X</sub> EF 40% higher than summer (∼35 °C) levels. Conversely, BC EF decreased by 26% in winter, indicating significant impacts of ambient temperature on emissions. Spatial analysis revealed that the average NO<sub>X</sub> EF of HDDTs on east freeways was 1.4 times higher than that on urban expressways, influenced by variations in the proportion of vehicle types segmented by usage. These findings offer a comprehensive perspective on HDDTs emissions, highlighting the importance of large-scale emission monitoring through plume chasing for precise and effective control of real-world HDDTs emissions.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124819"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124819","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing the emissions of heavy-duty diesel trucks (HDDTs) is crucial for managing air quality in megacities, especially concerning nitrogen oxides (NOX) and black carbon (BC). This study employed mobile plume chasing to monitor the real-world emissions of over 7778 HDDTs in Shenzhen. The findings indicate that the real-world NOX emission factors (EF) of China IV trucks did not differ significantly from those of China III, whereas China V and VI vehicles demonstrated fleet-averaged reductions of 27% and 85%, respectively. For China V, a significant decrease in the NOX EF for HDDTs registered after 2017 was attributed to the installation of advanced aftertreatment systems, including diesel oxidation catalysts (DOC) and Diesel Particle Filters (DPF), along with selective catalytic reduction (SCR). These technologies led to an average reduction of 42% in NOX and 61% in BC emissions. Seasonal variations were pronounced, with winter (∼20 °C) NOX EF 40% higher than summer (∼35 °C) levels. Conversely, BC EF decreased by 26% in winter, indicating significant impacts of ambient temperature on emissions. Spatial analysis revealed that the average NOX EF of HDDTs on east freeways was 1.4 times higher than that on urban expressways, influenced by variations in the proportion of vehicle types segmented by usage. These findings offer a comprehensive perspective on HDDTs emissions, highlighting the importance of large-scale emission monitoring through plume chasing for precise and effective control of real-world HDDTs emissions.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.