Guoxin Lan, Xiaohang Huang, Tongqing Li, Yingjie Huang, Yang Liao, Qiushi Zheng, Qin Zhao, Yue Yu, Junjie Lin
{"title":"Effect of microplastics on carbon, nitrogen and phosphorus cycle in farmland soil: A meta-analysis","authors":"Guoxin Lan, Xiaohang Huang, Tongqing Li, Yingjie Huang, Yang Liao, Qiushi Zheng, Qin Zhao, Yue Yu, Junjie Lin","doi":"10.1016/j.envpol.2025.125871","DOIUrl":null,"url":null,"abstract":"Farmland soil is a major sink for microplastics (MPs). Despite recognized potential impacts on soil ecosystems, comprehensive assessments of MPs' effects on carbon (C), nitrogen (N), and phosphorus (P) cycling in agricultural soils are limited. Data from 102 peer-reviewed studies were analyzed to elucidate the effects of MPs exposure on the C, N, and P cycles in soil. Results showed increased concentrations of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, and microbial biomass nitrogen, accompanied by elevated emissions of carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O) after MPs introduction. A random forest model revealed that soil C, N, and P cycles are driven by MPs characteristics (biodegradability, size, concentration), soil properties (initial pH, SOC, total N, clay content), and experimental conditions (incubation period, soil moisture). Complex interactions between MPs and soil C, N, and P were illustrated, with increased CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions due to C mineralization and enhanced denitrification rates caused by MPs. These negative effects imply a need for strengthened management of C, N, and P cycles in agricultural soil to reduce farmland ecosystems' contributions to greenhouse gas emissions.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"35 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.125871","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Farmland soil is a major sink for microplastics (MPs). Despite recognized potential impacts on soil ecosystems, comprehensive assessments of MPs' effects on carbon (C), nitrogen (N), and phosphorus (P) cycling in agricultural soils are limited. Data from 102 peer-reviewed studies were analyzed to elucidate the effects of MPs exposure on the C, N, and P cycles in soil. Results showed increased concentrations of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, and microbial biomass nitrogen, accompanied by elevated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) after MPs introduction. A random forest model revealed that soil C, N, and P cycles are driven by MPs characteristics (biodegradability, size, concentration), soil properties (initial pH, SOC, total N, clay content), and experimental conditions (incubation period, soil moisture). Complex interactions between MPs and soil C, N, and P were illustrated, with increased CO2, CH4, and N2O emissions due to C mineralization and enhanced denitrification rates caused by MPs. These negative effects imply a need for strengthened management of C, N, and P cycles in agricultural soil to reduce farmland ecosystems' contributions to greenhouse gas emissions.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.