Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2024-09-06 DOI:10.1007/s10653-024-02190-1
Cheng Hu, Zhendong Yang, Yijing Chen, Jiayi Tang, Li Zeng, Cong Peng, Liudong Chen, Jing Wang
{"title":"Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination.","authors":"Cheng Hu, Zhendong Yang, Yijing Chen, Jiayi Tang, Li Zeng, Cong Peng, Liudong Chen, Jing Wang","doi":"10.1007/s10653-024-02190-1","DOIUrl":null,"url":null,"abstract":"<p><p>Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02190-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Soil contamination with heavy metals from industrial and mining activities poses significant environmental and public health risks, necessitating effective remediation strategies. This review examines the utilization of sulfate-reducing bacteria (SRB) for bioremediation of heavy metal-contaminated soils. Specifically, it focuses on SRB metabolic pathways for heavy metal immobilization, interactions with other microorganisms, and integration with complementary remediation techniques such as soil amendments and phytoremediation. We explore the mechanisms of SRB action, their synergistic relationships within soil ecosystems, and the effectiveness of combined remediation approaches. Our findings indicate that SRB can effectively immobilize heavy metals by converting sulfate to sulfide, forming stable metal sulfides, thereby reducing the bioavailability and toxicity of heavy metals. Nevertheless, challenges persist, including the need to optimize environmental conditions for SRB activity, address their sensitivity to acidic conditions and high heavy metal concentrations, and mitigate the risk of secondary pollution from excessive carbon sources. This study underscores the necessity for innovative and sustainable SRB-based bioremediation strategies that integrate multiple techniques to address the complex issue of heavy metal soil contamination. Such advancements are crucial for promoting green mining practices and environmental restoration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开启土壤复兴之路:硫酸盐还原菌在减轻重金属污染中的作用。
工业和采矿活动造成的土壤重金属污染对环境和公众健康构成重大风险,因此必须采取有效的修复策略。本综述探讨了利用硫酸盐还原菌(SRB)对重金属污染土壤进行生物修复的问题。具体而言,它侧重于研究 SRB 固定重金属的代谢途径、与其他微生物的相互作用以及与土壤改良剂和植物修复等辅助修复技术的整合。我们探索了 SRB 的作用机制、它们在土壤生态系统中的协同关系以及综合修复方法的有效性。我们的研究结果表明,SRB 可以通过将硫酸盐转化为硫化物,形成稳定的金属硫化物,有效固定重金属,从而降低重金属的生物利用率和毒性。然而,挑战依然存在,包括需要优化 SRB 活动的环境条件,解决它们对酸性条件和高浓度重金属的敏感性问题,以及降低过量碳源造成二次污染的风险。这项研究强调了基于 SRB 的创新和可持续生物修复战略的必要性,这种战略应整合多种技术,以解决复杂的重金属土壤污染问题。这种进步对于促进绿色采矿实践和环境恢复至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Correction to: Environmental and human health risk of potentially toxic metals in freshwater and brackish water Nile tilapia (Oreochromis niloticus) aquaculture. Correction: Ecological, environmental risks and sources of arsenic and other elements in soils of Tuotuo River region, Qinghai-Tibet Plateau. Identifying the spatial pattern and driving factors of nitrate in groundwater using a novel framework of interpretable stacking ensemble learning. Mercury speciation in environmental samples associated with artisanal small-scale gold mines using a novel solid-phase extraction approach to sample collection and preservation. Correction: Synergistic mitigation of cadmium stress in rice (Oryza sativa L.) through combined selenium, calcium, and magnesium supplementation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1