Mercury speciation in environmental samples associated with artisanal small-scale gold mines using a novel solid-phase extraction approach to sample collection and preservation.
David King, Michael Watts, Elliott Hamilton, Robert Mortimer, Michael Coffey, Odipo Osano, Marcello Di Bonito
{"title":"Mercury speciation in environmental samples associated with artisanal small-scale gold mines using a novel solid-phase extraction approach to sample collection and preservation.","authors":"David King, Michael Watts, Elliott Hamilton, Robert Mortimer, Michael Coffey, Odipo Osano, Marcello Di Bonito","doi":"10.1007/s10653-024-02187-w","DOIUrl":null,"url":null,"abstract":"<p><p>In artisanal small-scale gold mines (ASGM), mercury (Hg) is known to pollute nearby river waters and sediments where it can be methylated to the highly bioavailable methylmercury (MeHg). The assessment of Hg speciation in water samples has been challenging for many years, with recommended procedures often not adequately allowing for analysis of samples in a suitable timeframe. Using a novel solid-phase extraction (SPE) method for sampling and preservation of Hg species, representative speciation data can be safely and easily collected and retained for up to 4-weeks (MeHg = 115 ± 8% refrigerated and 109 ± 13% unrefrigerated storage; Hg<sup>2+</sup> = 100 ± 14% refrigerated and 94 ± 12% unrefrigerated storage). Concentrations of MeHg in environmental water samples and drinking water were below detection limit across two ASGM sites in western Kenya and concentrations of Hg<sup>2+</sup> were below drinking water guidelines; however, drinking water sources contribute 20-30% of the tolerable weekly intake of Hg, indicating a need to minimise exposure of Hg from dietary sources to prevent Hg poisoning. Sediments from receiving rivers at ASGM sites showed total Hg concentrations above guideline limits (0.08-1.84 mg kg<sup>-1</sup> total Hg) along the length of the river; however, MeHg concentrations fluctuated dependent on the stagnation of the river due to damns and ponds (5.9 ± 14.3 µg kg<sup>-1</sup> MeHg). The findings show that SPE can be used as a robust sample collection and preservation approach for Hg speciation, which can better inform mitigation measures, understand ecological and human health implications, and improve environmental monitoring.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02187-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In artisanal small-scale gold mines (ASGM), mercury (Hg) is known to pollute nearby river waters and sediments where it can be methylated to the highly bioavailable methylmercury (MeHg). The assessment of Hg speciation in water samples has been challenging for many years, with recommended procedures often not adequately allowing for analysis of samples in a suitable timeframe. Using a novel solid-phase extraction (SPE) method for sampling and preservation of Hg species, representative speciation data can be safely and easily collected and retained for up to 4-weeks (MeHg = 115 ± 8% refrigerated and 109 ± 13% unrefrigerated storage; Hg2+ = 100 ± 14% refrigerated and 94 ± 12% unrefrigerated storage). Concentrations of MeHg in environmental water samples and drinking water were below detection limit across two ASGM sites in western Kenya and concentrations of Hg2+ were below drinking water guidelines; however, drinking water sources contribute 20-30% of the tolerable weekly intake of Hg, indicating a need to minimise exposure of Hg from dietary sources to prevent Hg poisoning. Sediments from receiving rivers at ASGM sites showed total Hg concentrations above guideline limits (0.08-1.84 mg kg-1 total Hg) along the length of the river; however, MeHg concentrations fluctuated dependent on the stagnation of the river due to damns and ponds (5.9 ± 14.3 µg kg-1 MeHg). The findings show that SPE can be used as a robust sample collection and preservation approach for Hg speciation, which can better inform mitigation measures, understand ecological and human health implications, and improve environmental monitoring.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.