Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in Zea mays L.

Plant signaling & behavior Pub Date : 2024-12-31 Epub Date: 2024-09-05 DOI:10.1080/15592324.2024.2400451
Minoti Gupta, Swatantar Kumar, Vinay Dwivedi, Dikshat Gopal Gupta, Daoud Ali, Saud Alarifi, Ashish Patel, Virendra Kumar Yadav
{"title":"Selective synergistic effects of oxalic acid and salicylic acid in enhancing amino acid levels and alleviating lead stress in <i>Zea mays</i> L.","authors":"Minoti Gupta, Swatantar Kumar, Vinay Dwivedi, Dikshat Gopal Gupta, Daoud Ali, Saud Alarifi, Ashish Patel, Virendra Kumar Yadav","doi":"10.1080/15592324.2024.2400451","DOIUrl":null,"url":null,"abstract":"<p><p>Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on <i>Zea mays L</i>. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on <i>Zea mays</i> L. The soil was treated with lead nitrate Pb (NO<sub>3</sub>)<sub>2</sub> (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (<i>p</i> < 0.0001).</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"19 1","pages":"2400451"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382712/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2024.2400451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lead is one of the major environmental pollutants which is highly toxic to plants and living beings. The current investigation thoroughly evaluated the synergistic effects of oxalic acid (OA) and salicylic acid (SA) on Zea mays L. plants subjected to varying durations (15, 30, 30, and 45 days) of lead (Pb) stress. Besides, the effects of oxalic acid (OA) combined with salicylic acid (SA) for different amino acids at various periods of Pb stress were also investigated on Zea mays L. The soil was treated with lead nitrate Pb (NO3)2 (0.5 mM) to induce Pb stress while the stressed plants were further treated using oxalic acid (25 mg/L), salicylic acid (25 mg/L), and their combination OA + SA (25 mg/L each). Measurements of protein content, malondialdehyde (MDA) levels, guaiacol peroxidase (GPOX) activity, catalase (CAT) activity, GSH content, and Pb concentration in maize leaves were done during this study. MDA levels increased by 71% under Pb stress, while protein content decreased by 56%, GSH content by 35%, and CAT activity by 46%. After treatment with SA, OA, and OA+SA, there was a significant reversal of these damages, with the OA+SA combination showing the highest improvement. Specifically, OA+SA treatment led to a 45% increase in protein content and a 39% reduction in MDA levels compared to Pb treatment alone. Moreover, amino acid concentrations increased by 68% under the Pb+OA+SA treatment, reflecting the most significant recovery (p < 0.0001).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
草酸和水杨酸在提高玉米氨基酸水平和缓解铅胁迫方面的选择性协同效应
铅是主要的环境污染物之一,对植物和生物有剧毒。目前的研究全面评估了草酸(OA)和水杨酸(SA)对受到不同持续时间(15、30、30 和 45 天)铅(Pb)胁迫的玉米植株的协同效应。用硝酸铅 Pb(NO3)2(0.5 mM)处理土壤以诱导铅胁迫,然后用草酸(25 mg/L)、水杨酸(25 mg/L)以及草酸+水杨酸组合(各 25 mg/L)进一步处理受胁迫的植物。本研究测量了玉米叶片中的蛋白质含量、丙二醛(MDA)水平、愈创木酚过氧化物酶(GPOX)活性、过氧化氢酶(CAT)活性、GSH 含量和铅浓度。在铅胁迫下,MDA 含量增加了 71%,蛋白质含量降低了 56%,GSH 含量降低了 35%,CAT 活性降低了 46%。经 SA、OA 和 OA+SA 处理后,这些损害得到明显逆转,其中 OA+SA 组合的改善程度最高。具体来说,与单独使用铅处理相比,OA+SA 处理使蛋白质含量增加了 45%,MDA 水平降低了 39%。此外,在 Pb+OA+SA 处理下,氨基酸浓度增加了 68%,反映了最显著的恢复(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. Response of photosynthesis and electrical reactions of wheat plants upon the action of magnetic fields in the Schumann resonance frequency band. Reciprocal modulation of responses to nitrate starvation and hypoxia in roots and leaves of Arabidopsis thaliana. Cold priming on pathogen susceptibility in the Arabidopsis eds1 mutant background requires a functional stromal Ascorbate Peroxidase. Editorial: plant-microbial symbiosis toward sustainable food security.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1