Hierarchical polyimide-based composite foam for compatible multi-band stealth

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-09-05 DOI:10.1016/j.jmst.2024.08.016
Shuangshuang Li, Mingyang Zhu, Wei Li, Yezi Lu, Xinwei Tang, Haijun Chen, Zixuan Wang, Mengying Xu, Yan Li, Zaiyin Hu, Lijuan Long, Zicheng Wang, Tianxi Liu
{"title":"Hierarchical polyimide-based composite foam for compatible multi-band stealth","authors":"Shuangshuang Li, Mingyang Zhu, Wei Li, Yezi Lu, Xinwei Tang, Haijun Chen, Zixuan Wang, Mengying Xu, Yan Li, Zaiyin Hu, Lijuan Long, Zicheng Wang, Tianxi Liu","doi":"10.1016/j.jmst.2024.08.016","DOIUrl":null,"url":null,"abstract":"<p>Designing and manufacturing compatible multi-band stealth materials remains a great challenge. In this work, a silver-metalized polyimide photochromic composite foam is successfully fabricated by self-activating electroless silver-plating on the surface of the polyimide skeleton and followed by applying a photochromic coating on the upper surface. The effective loading of silver nanoparticles facilitates the rational construction of a conductive network in foam, improving the efficient dissipation of incident electromagnetic waves. In addition, the interconnected conductive network successfully endows it with an excellent Joule heating capability, which can be employed to effectively remove ice and/or mitigate the impact of water vapor on radar stealth performance in cold and wet weather. Besides, the low emissivity silver plating combined with superior thermal insulation of foam enables the material with excellent infrared stealth performance. Moreover, the modulation of self-adaptive photochromic coating brings a prominent visual stealth performance under different sunlight backgrounds. As a result, such excellent radar and infrared stealth performance combined with the adaptive color-switching capability provides the foam with great potential for preparing compatible multi-band materials.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing and manufacturing compatible multi-band stealth materials remains a great challenge. In this work, a silver-metalized polyimide photochromic composite foam is successfully fabricated by self-activating electroless silver-plating on the surface of the polyimide skeleton and followed by applying a photochromic coating on the upper surface. The effective loading of silver nanoparticles facilitates the rational construction of a conductive network in foam, improving the efficient dissipation of incident electromagnetic waves. In addition, the interconnected conductive network successfully endows it with an excellent Joule heating capability, which can be employed to effectively remove ice and/or mitigate the impact of water vapor on radar stealth performance in cold and wet weather. Besides, the low emissivity silver plating combined with superior thermal insulation of foam enables the material with excellent infrared stealth performance. Moreover, the modulation of self-adaptive photochromic coating brings a prominent visual stealth performance under different sunlight backgrounds. As a result, such excellent radar and infrared stealth performance combined with the adaptive color-switching capability provides the foam with great potential for preparing compatible multi-band materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于兼容多波段隐形的分层聚酰亚胺基复合泡沫
设计和制造兼容的多波段隐形材料仍然是一项巨大的挑战。在这项工作中,通过在聚酰亚胺骨架表面自激活无电解镀银,然后在上表面涂上光致变色涂层,成功制造出银金属化聚酰亚胺光致变色复合泡沫。银纳米粒子的有效负载促进了泡沫导电网络的合理构建,提高了入射电磁波的消散效率。此外,相互连接的导电网络还成功地赋予了它出色的焦耳加热能力,可用于在寒冷和潮湿的天气中有效除冰和/或减轻水蒸气对雷达隐身性能的影响。此外,低发射率镀银与泡沫塑料的出色隔热性能相结合,使材料具有出色的红外隐形性能。此外,自适应光致变色涂层的调制还能在不同的阳光背景下带来突出的视觉隐身性能。因此,这种优异的雷达和红外隐身性能与自适应颜色切换能力相结合,为泡沫材料提供了制备兼容多波段材料的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Dispersion, solid solution, and covalent bond coupled to strengthen K4169/TiAl composite brazed joints: first-principles and experimental perspective Elucidating the effect of cyclic plasticity on strengthening mechanisms and fatigue property of 5xxx Al alloys Ti3C2Tx MXene enhanced PEO/SN-based solid electrolyte for high-performance Li metal battery Electron structure customization of molybdenum phosphide via lanthanum doping toward highly efficient overall water splitting Self-regulating heating and self-powered flexible fiber fabrics at low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1