Intercrystal Optical Crosstalk in Radiation Detectors: Monte Carlo Modeling and Experimental Validation

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING IEEE Transactions on Radiation and Plasma Medical Sciences Pub Date : 2024-04-29 DOI:10.1109/TRPMS.2024.3395131
Carlotta Trigila;N. Kratochwil;B. Mehadji;G. Ariño-Estrada;E. Roncali
{"title":"Intercrystal Optical Crosstalk in Radiation Detectors: Monte Carlo Modeling and Experimental Validation","authors":"Carlotta Trigila;N. Kratochwil;B. Mehadji;G. Ariño-Estrada;E. Roncali","doi":"10.1109/TRPMS.2024.3395131","DOIUrl":null,"url":null,"abstract":"High-performance radiation detectors often employ crystal arrays where light can leak between them, a phenomenon called intercrystal crosstalk, which demands mitigation for optimal detector performance. The complexity of measuring optical crosstalk in conventional detector geometries makes optical Monte Carlo simulation essential to study and reduce crosstalk through better designs. Addressing the absence of validated transmission models in Monte Carlo toolkits, we developed and integrated a new simulation model into the look-up table Davis Model, aiming at simulating optical photon refraction at the crystal interfaces using GATE. For the first time, we validated the intercrystal optical crosstalk model with experiments in two optically coupled Lutetium-yttrium oxyorthosilicate crystals read by two SiPMs, testing three thicknesses and four interfaces (air, glue, Teflon, and ESR). Simulated and experimental crosstalk agreed within one FWHM for all configurations. These results show the possibility of predicting optical photon transmission in detector designs with multiple crystal elements. Indeed, although validated using only two crystals, the model can be used in more complex geometries. The model, available to GATE users upon request, provides a valuable resource for researchers when optimizing detector geometry where optical crosstalk needs to be considered, i.e., ensuring optical isolation between the photodetector’s responses.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10510415","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10510415/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance radiation detectors often employ crystal arrays where light can leak between them, a phenomenon called intercrystal crosstalk, which demands mitigation for optimal detector performance. The complexity of measuring optical crosstalk in conventional detector geometries makes optical Monte Carlo simulation essential to study and reduce crosstalk through better designs. Addressing the absence of validated transmission models in Monte Carlo toolkits, we developed and integrated a new simulation model into the look-up table Davis Model, aiming at simulating optical photon refraction at the crystal interfaces using GATE. For the first time, we validated the intercrystal optical crosstalk model with experiments in two optically coupled Lutetium-yttrium oxyorthosilicate crystals read by two SiPMs, testing three thicknesses and four interfaces (air, glue, Teflon, and ESR). Simulated and experimental crosstalk agreed within one FWHM for all configurations. These results show the possibility of predicting optical photon transmission in detector designs with multiple crystal elements. Indeed, although validated using only two crystals, the model can be used in more complex geometries. The model, available to GATE users upon request, provides a valuable resource for researchers when optimizing detector geometry where optical crosstalk needs to be considered, i.e., ensuring optical isolation between the photodetector’s responses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
辐射探测器中的晶体间光学串扰:蒙特卡罗建模与实验验证
高性能辐射探测器通常采用晶体阵列,晶体间可能存在漏光现象,这种现象被称为晶体间串扰。测量传统探测器几何结构中光学串扰的复杂性使得光学蒙特卡罗模拟成为研究和通过更好的设计减少串扰的关键。针对蒙特卡罗工具包中缺乏经过验证的传输模型的问题,我们开发了一种新的模拟模型,并将其集成到查找表戴维斯模型中,旨在利用 GATE 模拟晶体界面上的光学光子折射。我们首次在两个光学耦合镥钇氧硅酸盐晶体中通过两个 SiPM 读取实验验证了晶体间光学串扰模型,测试了三种厚度和四种界面(空气、胶水、聚四氟乙烯和 ESR)。在所有配置中,模拟串扰和实验串扰都在一个 FWHM 范围内。这些结果表明,在具有多个晶体元件的探测器设计中,预测光学光子传输是可能的。事实上,虽然该模型仅使用两个晶体进行了验证,但可用于更复杂的几何结构。该模型可应要求提供给 GATE 用户,为研究人员优化需要考虑光学串扰的探测器几何结构(即确保光探测器响应之间的光学隔离)提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
期刊最新文献
Affiliate Plan of the IEEE Nuclear and Plasma Sciences Society Table of Contents Introducing IEEE Collabratec IEEE Transactions on Radiation and Plasma Medical Sciences Publication Information Member Get-a-Member (MGM) Program
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1