{"title":"Ultra-high stretchability and shape fixation rate shape memory polyurethanes based on cyclic polytetrahydrofuran molecular rings","authors":"","doi":"10.1016/j.polymer.2024.127578","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical cross-linking is commonly used to prevent slippage between molecular chains in shape memory polymers (SMPs) to improve shape return. However, chemical cross-linking makes SMPs less stretchable, and the disordered network structure reduces the ability of SMPs to maintain temporary shapes. To obtain ultra-high stretchability and better shape memory properties, a cyclic polymer (C-PTHF-OH) was introduced into the shape memory polyurethane (PUC<sub>X</sub>) network, and the PUC<sub>X</sub> network topology was controlled by adjusting the content of C-PTHF-OH molecular rings. PUC<sub>0.5</sub> exhibited the highest shape fixation (99.9 %) and shape recovery (98.4 %), and the higher the content of the C-PTHF-OH molecular ring, the higher the elongation at break of the prepared PUC<sub>X</sub>, with a slight decrease in tensile strength. Compared to PUC<sub>0</sub> (2000 % elongation at break and 32 MPa tensile strength) prepared from the linear polymer, PUC<sub>0.5</sub> showed up to 2150 % elongation at break and 31 MPa tensile strength. This study provides new ideas for the design of network structures for SMPs and is a new paradigm introduced into the SMPs network by cyclic topological polymers.</p></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124009145","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical cross-linking is commonly used to prevent slippage between molecular chains in shape memory polymers (SMPs) to improve shape return. However, chemical cross-linking makes SMPs less stretchable, and the disordered network structure reduces the ability of SMPs to maintain temporary shapes. To obtain ultra-high stretchability and better shape memory properties, a cyclic polymer (C-PTHF-OH) was introduced into the shape memory polyurethane (PUCX) network, and the PUCX network topology was controlled by adjusting the content of C-PTHF-OH molecular rings. PUC0.5 exhibited the highest shape fixation (99.9 %) and shape recovery (98.4 %), and the higher the content of the C-PTHF-OH molecular ring, the higher the elongation at break of the prepared PUCX, with a slight decrease in tensile strength. Compared to PUC0 (2000 % elongation at break and 32 MPa tensile strength) prepared from the linear polymer, PUC0.5 showed up to 2150 % elongation at break and 31 MPa tensile strength. This study provides new ideas for the design of network structures for SMPs and is a new paradigm introduced into the SMPs network by cyclic topological polymers.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.