A Strongly Coupled Metal/Hydroxide Heterostructure Cascades Carbon Dioxide and Nitrate Reduction Reactions toward Efficient Urea Electrosynthesis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-09-07 DOI:10.1002/anie.202410105
Wei Ye, Ye Zhang, Liang Chen, Fangfang Wu, Yuanhui Yao, Wei Wang, Genping Zhu, Gan Jia, Zhongchao Bai, Shi Xue Dou, Peng Gao, Nana Wang, Guoxiu Wang
{"title":"A Strongly Coupled Metal/Hydroxide Heterostructure Cascades Carbon Dioxide and Nitrate Reduction Reactions toward Efficient Urea Electrosynthesis","authors":"Wei Ye, Ye Zhang, Liang Chen, Fangfang Wu, Yuanhui Yao, Wei Wang, Genping Zhu, Gan Jia, Zhongchao Bai, Shi Xue Dou, Peng Gao, Nana Wang, Guoxiu Wang","doi":"10.1002/anie.202410105","DOIUrl":null,"url":null,"abstract":"The direct coupling of nitrate ions and carbon dioxide for urea synthesis presents an appealing alternative to the Bosch–Meiser process in industry. The simultaneous activation of carbon dioxide and nitrate, however, as well as efficient C–N coupling on single active site, poses significant challenges. Here, we propose a novel metal/hydroxide heterostructure strategy based on synthesizing an Ag-CuNi(OH)2 composite to cascade carbon dioxide and nitrate reduction reactions for urea electrosynthesis. The strongly coupled metal/hydroxide heterostructure interface integrates two distinct sites for carbon dioxide and nitrate activation, and facilitates the coupling of *CO (on silver, where * denotes an active site) and *NH2 (on hydroxide) for urea formation. Moreover, the strongly coupled interface optimizes the water splitting process and facilitates the supply of active hydrogen atoms, thereby expediting the deoxyreduction processes essential for urea formation. Consequently, our Ag-CuNi(OH)2 composite delivers a high urea yield rate of 25.6 mmol gcat.–1 h–1 and high urea Faradaic efficiency of 46.1%, as well as excellent cycling stability. This work provides new insights into the design of dual-site catalysts for C–N coupling, considering their role on the interface.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202410105","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The direct coupling of nitrate ions and carbon dioxide for urea synthesis presents an appealing alternative to the Bosch–Meiser process in industry. The simultaneous activation of carbon dioxide and nitrate, however, as well as efficient C–N coupling on single active site, poses significant challenges. Here, we propose a novel metal/hydroxide heterostructure strategy based on synthesizing an Ag-CuNi(OH)2 composite to cascade carbon dioxide and nitrate reduction reactions for urea electrosynthesis. The strongly coupled metal/hydroxide heterostructure interface integrates two distinct sites for carbon dioxide and nitrate activation, and facilitates the coupling of *CO (on silver, where * denotes an active site) and *NH2 (on hydroxide) for urea formation. Moreover, the strongly coupled interface optimizes the water splitting process and facilitates the supply of active hydrogen atoms, thereby expediting the deoxyreduction processes essential for urea formation. Consequently, our Ag-CuNi(OH)2 composite delivers a high urea yield rate of 25.6 mmol gcat.–1 h–1 and high urea Faradaic efficiency of 46.1%, as well as excellent cycling stability. This work provides new insights into the design of dual-site catalysts for C–N coupling, considering their role on the interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强耦合金属/氢氧化物异质结构级联二氧化碳和硝酸盐还原反应,实现高效尿素电合成
在工业领域,硝酸根离子与二氧化碳直接偶联合成尿素是博世-迈泽工艺的一种极具吸引力的替代工艺。然而,同时活化二氧化碳和硝酸根以及在单一活性位点上实现高效的 C-N 偶联是一项重大挑战。在此,我们提出了一种基于合成 Ag-CuNi(OH)2 复合材料的新型金属/氢氧化物异质结构策略,用于级联二氧化碳和硝酸盐还原反应以进行尿素电合成。强耦合金属/氢氧化物异质结构界面整合了二氧化碳和硝酸盐活化的两个不同位点,有利于*CO(在银上,*表示活性位点)和*NH2(在氢氧化物上)耦合形成尿素。此外,强耦合界面优化了水分裂过程,促进了活性氢原子的供应,从而加快了尿素形成所必需的脱氧还原过程。因此,我们的 Ag-CuNi(OH)2 复合材料的尿素产率高达 25.6 mmol gcat.-1 h-1,尿素法拉第效率高达 46.1%,并且具有出色的循环稳定性。考虑到它们在界面上的作用,这项研究为设计用于 C-N 偶联的双位点催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Non-natural MUC1 Glycopeptide Homogeneous Cancer Vaccine with Enhanced Immunogenicity and Therapeutic Activity Extending Shelf-life of Two-step Method Precursor Solutions through Targeted Regulation for Highly Efficient and Reproducible Perovskite Solar Cells MXene Triggered Free Radical Polymerization in Minutes toward All-Printed Zn-Ion Hybrid Capacitors and Beyond Tailoring Copper Single-Atoms-Stabilized Metastable Transition-Metal-Dichalcogenides for Sustainable Hydrogen Production Mechanochemical "Cage-on-MOF” Strategy for Enhancing Gas Adsorption and Separation through Aperture Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1