Amalia Amato, Roberta Esposito, Thomas Viel, Francesca Glaviano, Mariacristina Cocca, Loredana Manfra, Giovanni Libralato, Emanuele Somma, Maurizio Lorenti, Maria Costantini, Valerio Zupo
{"title":"Effects of biodegradable microplastics on the crustacean isopod Idotea balthica basteri Audouin, 1826.","authors":"Amalia Amato, Roberta Esposito, Thomas Viel, Francesca Glaviano, Mariacristina Cocca, Loredana Manfra, Giovanni Libralato, Emanuele Somma, Maurizio Lorenti, Maria Costantini, Valerio Zupo","doi":"10.1016/j.envpol.2024.124897","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic pollution is a notable environmental issue, being plastic widespread and characterized by long lifetime. Serious environmental problems are caused by the improper management of plastic end-of-life. In fact, plastic litter is currently detected in any environment. Biodegradable Polymers (BPs) are promising materials if correctly applied and managed at their end of life, to minimize environmental problems. However, poor data on the fate and toxicity of BPs on marine organisms still limit their applicability. In this work we tested the effects of five biodegradable polymers (polybutylene succinate, PBS; polybutylene succinate-co-butylene adipate, PBSA; polycaprolactone, PCL; poly (3-hydroxybutyrates, PHB; polylactic acid, PLA) widely used for several purposes. Adult individuals of the isopod Idotea balthica basteri were fed on these polymers for twenty-seven days by adding biodegradable microplastic polymers (BMPs) to formulated feeds at two concentrations, viz. 0.84 and 8.4 g/kg feed. The plastic fragments affected the mortality rates of the isopods, as well as the expression levels of eighteen genes (tested by Real Time qPCR) involved in stress response and detoxification processes. Our findings confirmed that I. balthica basteri is a convenient model organism to study the response to environmental pollution and emerging contaminants in the aquatic environment, and highlighted the need for the correct use of BMPs.</p>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":" ","pages":"124897"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.124897","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plastic pollution is a notable environmental issue, being plastic widespread and characterized by long lifetime. Serious environmental problems are caused by the improper management of plastic end-of-life. In fact, plastic litter is currently detected in any environment. Biodegradable Polymers (BPs) are promising materials if correctly applied and managed at their end of life, to minimize environmental problems. However, poor data on the fate and toxicity of BPs on marine organisms still limit their applicability. In this work we tested the effects of five biodegradable polymers (polybutylene succinate, PBS; polybutylene succinate-co-butylene adipate, PBSA; polycaprolactone, PCL; poly (3-hydroxybutyrates, PHB; polylactic acid, PLA) widely used for several purposes. Adult individuals of the isopod Idotea balthica basteri were fed on these polymers for twenty-seven days by adding biodegradable microplastic polymers (BMPs) to formulated feeds at two concentrations, viz. 0.84 and 8.4 g/kg feed. The plastic fragments affected the mortality rates of the isopods, as well as the expression levels of eighteen genes (tested by Real Time qPCR) involved in stress response and detoxification processes. Our findings confirmed that I. balthica basteri is a convenient model organism to study the response to environmental pollution and emerging contaminants in the aquatic environment, and highlighted the need for the correct use of BMPs.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.