Yubo Wang, Yueru Xu, Huiting Shan, Huimin Pan, Ji Chen, Jianhua Yang
{"title":"Health state utility values of type 2 diabetes mellitus and related complications: a systematic review and meta-regression.","authors":"Yubo Wang, Yueru Xu, Huiting Shan, Huimin Pan, Ji Chen, Jianhua Yang","doi":"10.1186/s12955-024-02288-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to synthesize and quantitatively examine Health State Utility Values (HSUVs) for Type 2 Diabetes Mellitus (T2DM) and its complications, providing a robust meta-regression framework for selecting appropriate HSUV estimates.</p><p><strong>Method: </strong>We conducted a systematic review to extract HSUVs for T2DM and its complications, encompassing various influencing factors. Relevant literature was sourced from a review spanning 2000-2020, supplemented by literature from PubMed, Embase, and the Web of Science (up to March 2024). Multivariate meta-regression was performed to evaluate the impact of measurement tools, tariffs, health status, and clinical and demographic variables on HSUVs.</p><p><strong>Results: </strong>Our search yielded 118 studies, contributing 1044 HSUVs. The HSUVs for T2DM with complications varied, from 0.65 for cerebrovascular disease to 0.77 for neuropathy. The EQ-5D-3L emerged as the most frequently employed valuation method. HSUV differences across instruments were observed; 15-D had the highest (0.89), while HUI-3 had the lowest (0.70) values. Regression analysis elucidated the significant effects of instrument and tariff choice on HSUVs. Complication-related utility decrement, especially in diabetic foot, was quantified. Age <70 was linked to increased HSUVs, while longer illness duration, hypertension, overweight and obesity correlated with reduced HSUVs.</p><p><strong>Conclusion: </strong>Accurate HSUVs are vital for the optimization of T2DM management strategies. This study provided a comprehensive data pool for HSUVs selection, and quantified the influence of various factors on HSUVs, informing analysts and policymakers in understanding the utility variations associated with T2DM and its complications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12955-024-02288-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background: This study aimed to synthesize and quantitatively examine Health State Utility Values (HSUVs) for Type 2 Diabetes Mellitus (T2DM) and its complications, providing a robust meta-regression framework for selecting appropriate HSUV estimates.
Method: We conducted a systematic review to extract HSUVs for T2DM and its complications, encompassing various influencing factors. Relevant literature was sourced from a review spanning 2000-2020, supplemented by literature from PubMed, Embase, and the Web of Science (up to March 2024). Multivariate meta-regression was performed to evaluate the impact of measurement tools, tariffs, health status, and clinical and demographic variables on HSUVs.
Results: Our search yielded 118 studies, contributing 1044 HSUVs. The HSUVs for T2DM with complications varied, from 0.65 for cerebrovascular disease to 0.77 for neuropathy. The EQ-5D-3L emerged as the most frequently employed valuation method. HSUV differences across instruments were observed; 15-D had the highest (0.89), while HUI-3 had the lowest (0.70) values. Regression analysis elucidated the significant effects of instrument and tariff choice on HSUVs. Complication-related utility decrement, especially in diabetic foot, was quantified. Age <70 was linked to increased HSUVs, while longer illness duration, hypertension, overweight and obesity correlated with reduced HSUVs.
Conclusion: Accurate HSUVs are vital for the optimization of T2DM management strategies. This study provided a comprehensive data pool for HSUVs selection, and quantified the influence of various factors on HSUVs, informing analysts and policymakers in understanding the utility variations associated with T2DM and its complications.