Correlation of acoustic emission signatures with electrochemical and mechanical behavior in Li-ion batteries: A comprehensive method for in-operando acoustic emission analysis

{"title":"Correlation of acoustic emission signatures with electrochemical and mechanical behavior in Li-ion batteries: A comprehensive method for in-operando acoustic emission analysis","authors":"","doi":"10.1016/j.nxener.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>As the demand for high-performance and long-lasting batteries continues to escalate, understanding the degradation mechanisms of Li-ion batteries (LIBs) has become a pressing concern. In this study, we employed the acoustic emission (AE) technique to detect and quantify the internal changes occurring within LIBs during the degradation processes. Our goal was to propose a comprehensive method to categorize the AE data and correlate them with different battery events, which has not yet been properly established in the state of the art. Two commercial pouch cells at different levels of degradation were monitored using the AE technique during their cycling, and the changes in their electrochemical and mechanical behavior were analyzed. A thorough investigation of the AE hits enabled us to identify 4 distinct AE types in terms of frequency, which could reflect multiple battery degradation events, including intercalation-induced stress, gas generation, and particle/electrode cracking. Our proposed approach was compared with the conventional methods presented in past studies, demonstrating its compatibility in explaining different battery phenomena and the coupled behavior of those phenomena. Overall, this work offers a new approach to <em>in-operando</em> AE analysis of LIBs, which helps further development of the AE technique as a real-time and nondestructive diagnostic tool for LIBs.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X24000942/pdfft?md5=3b775895fa6a479553ab288a91328a8d&pid=1-s2.0-S2949821X24000942-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24000942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for high-performance and long-lasting batteries continues to escalate, understanding the degradation mechanisms of Li-ion batteries (LIBs) has become a pressing concern. In this study, we employed the acoustic emission (AE) technique to detect and quantify the internal changes occurring within LIBs during the degradation processes. Our goal was to propose a comprehensive method to categorize the AE data and correlate them with different battery events, which has not yet been properly established in the state of the art. Two commercial pouch cells at different levels of degradation were monitored using the AE technique during their cycling, and the changes in their electrochemical and mechanical behavior were analyzed. A thorough investigation of the AE hits enabled us to identify 4 distinct AE types in terms of frequency, which could reflect multiple battery degradation events, including intercalation-induced stress, gas generation, and particle/electrode cracking. Our proposed approach was compared with the conventional methods presented in past studies, demonstrating its compatibility in explaining different battery phenomena and the coupled behavior of those phenomena. Overall, this work offers a new approach to in-operando AE analysis of LIBs, which helps further development of the AE technique as a real-time and nondestructive diagnostic tool for LIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声发射特征与锂离子电池电化学和机械行为的相关性:操作中声发射分析的综合方法
随着人们对高性能、长寿命电池的需求不断增加,了解锂离子电池(LIB)的降解机制已成为一个迫切的问题。在这项研究中,我们采用声发射(AE)技术来检测和量化锂离子电池在降解过程中发生的内部变化。我们的目标是提出一种全面的方法来对声发射数据进行分类,并将其与不同的电池事件相关联,而这种方法在目前的技术水平中尚未得到适当的确立。我们使用 AE 技术监测了两个处于不同降解水平的商用袋装电池的循环过程,并分析了其电化学和机械行为的变化。通过对 AE 频率的深入研究,我们确定了 4 种不同频率的 AE 类型,它们可以反映多种电池降解事件,包括插层引起的应力、气体生成和颗粒/电极开裂。我们提出的方法与过去研究中提出的传统方法进行了比较,证明其在解释不同电池现象和这些现象的耦合行为方面具有兼容性。总之,这项工作为锂离子电池的操作中 AE 分析提供了一种新方法,有助于进一步发展 AE 技术,使其成为锂离子电池的实时无损诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1