A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Applications-Society and Environment Pub Date : 2024-09-03 DOI:10.1016/j.rsase.2024.101341
Mthembeni Mngadi , Ilaria Germishuizen , Onisimo Mutanga , Rowan Naicker , Wouter H. Maes , Omosalewa Odebiri , Michelle Schroder
{"title":"A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level","authors":"Mthembeni Mngadi ,&nbsp;Ilaria Germishuizen ,&nbsp;Onisimo Mutanga ,&nbsp;Rowan Naicker ,&nbsp;Wouter H. Maes ,&nbsp;Omosalewa Odebiri ,&nbsp;Michelle Schroder","doi":"10.1016/j.rsase.2024.101341","DOIUrl":null,"url":null,"abstract":"<div><p>An increase in the frequency and severity of forest insect pest and disease (FIPD) outbreaks has drastically affected the health and functioning of many forest stands worldwide. This has led to an increased demand for enhanced monitoring techniques with the capabilities to identify individually infected trees before FIPD outbreaks have an opportunity to spread. In this regard, remote sensing has emerged as an indespensible tool with the capacity to map outbreaks at an individual tree level. As FIPD outbreaks have intensified, and with the advancement of monitoring capabilities, there has been a surge of interest within this field. In response to this rapid growth of interest, this review provides a comprehensive assessment of the recent advancements, challenges, and future prospects of the use of remote sensing in mapping FIPD at a tree-level. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, we conducted a systematic review encompassing 87 studies published from 2000 to May 2023. Specifically, we examined various aspects, including taxonomic characteristics, sensor types, and the analytical methods applied. Our findings revealed a signficant increase in research activity in the last few years, with the majority of these studies conducted in Asia, North America, and Europe. The most extensively studied insect pest was the Bark beetle (<em>Ips typographus</em>), whilst Pine wilt disease was found to be the most researched disease. Unmanned aerial vehicles and hyperspectral sensors were favoured by researchers for the majority of monitoring tasks. In terms of analytical methods, random forest (84%), artificial neural network (83%), and convolutional neural networks (93%) were found to have produced the highest levels of model accuracy. Lastly, this review underscores the indispensable role of remote sensing in facilitating the monitoring of FIPD, and identifies specific limitations and potential research gaps that need to be addressed within the field.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101341"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An increase in the frequency and severity of forest insect pest and disease (FIPD) outbreaks has drastically affected the health and functioning of many forest stands worldwide. This has led to an increased demand for enhanced monitoring techniques with the capabilities to identify individually infected trees before FIPD outbreaks have an opportunity to spread. In this regard, remote sensing has emerged as an indespensible tool with the capacity to map outbreaks at an individual tree level. As FIPD outbreaks have intensified, and with the advancement of monitoring capabilities, there has been a surge of interest within this field. In response to this rapid growth of interest, this review provides a comprehensive assessment of the recent advancements, challenges, and future prospects of the use of remote sensing in mapping FIPD at a tree-level. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, we conducted a systematic review encompassing 87 studies published from 2000 to May 2023. Specifically, we examined various aspects, including taxonomic characteristics, sensor types, and the analytical methods applied. Our findings revealed a signficant increase in research activity in the last few years, with the majority of these studies conducted in Asia, North America, and Europe. The most extensively studied insect pest was the Bark beetle (Ips typographus), whilst Pine wilt disease was found to be the most researched disease. Unmanned aerial vehicles and hyperspectral sensors were favoured by researchers for the majority of monitoring tasks. In terms of analytical methods, random forest (84%), artificial neural network (83%), and convolutional neural networks (93%) were found to have produced the highest levels of model accuracy. Lastly, this review underscores the indispensable role of remote sensing in facilitating the monitoring of FIPD, and identifies specific limitations and potential research gaps that need to be addressed within the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
系统审查遥感技术在绘制树木一级森林病虫害地图中的应用
森林病虫害(FIPD)爆发的频率和严重程度增加,严重影响了全球许多林分的健康和功能。因此,人们越来越需要加强监测技术,以便在森林病虫害爆发有机会蔓延之前识别出个别受感染的树木。在这方面,遥感技术已经成为一种不可或缺的工具,它能够绘制单棵树木的疫情分布图。随着 FIPD 爆发的加剧,以及监测能力的提高,人们对这一领域的兴趣急剧增加。为了应对这种快速增长的兴趣,本综述对利用遥感技术绘制树木级别的 FIPD 地图的最新进展、挑战和未来前景进行了全面评估。利用系统综述和元分析首选报告项目(PRISMA)协议,我们对 2000 年至 2023 年 5 月间发表的 87 项研究进行了系统综述。具体来说,我们研究了各个方面,包括分类学特征、传感器类型和应用的分析方法。我们的研究结果表明,过去几年中研究活动显著增加,其中大部分研究在亚洲、北美和欧洲进行。研究最多的害虫是树皮甲虫(Ips typographus),而松树枯萎病则是研究最多的疾病。在大多数监测任务中,无人驾驶飞行器和高光谱传感器受到研究人员的青睐。在分析方法方面,随机森林(84%)、人工神经网络(83%)和卷积神经网络(93%)的模型准确率最高。最后,本综述强调了遥感技术在促进 FIPD 监测方面不可或缺的作用,并指出了该领域需要解决的具体局限性和潜在的研究缺口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
期刊最新文献
Mapping coastal wetland changes from 1985 to 2022 in the US Atlantic and Gulf Coasts using Landsat time series and national wetland inventories Assessment of Dry Microburst Index over India derived from INSAT-3DR satellite Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region Analysis of radiative heat flux using ASTER thermal images: Climatological and volcanological factors on Java Island, Indonesia Hybrid Naïve Bayes Gaussian mixture models and SAR polarimetry based automatic flooded vegetation studies using PALSAR-2 data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1