Machining behaviour modulation of electrochemical milling via manipulation of inter-electrode gap: From electrochemical machining to electrochemical discharge machining
{"title":"Machining behaviour modulation of electrochemical milling via manipulation of inter-electrode gap: From electrochemical machining to electrochemical discharge machining","authors":"Huanghai Kong, Ningsong Qu, Jiajie Chen","doi":"10.1016/j.jmatprotec.2024.118584","DOIUrl":null,"url":null,"abstract":"<div><p>The inter-electrode gap (IEG) is a key factor in electrochemical machining (ECM), which directly governs the electric resistance of machining and affects the flow field. In conventional electrochemical milling, the actual IEG expands with the material removal of the workpiece, which increases the electric resistance and renders the electrolyte flow ineffective in transporting the electrolytic products. In this paper, a sinking push mode for electrochemical milling is proposed to minimise the IEG, thus improving material removal rate (MRR). Under a small IEG, electrochemical discharges are observed and damages the workpiece. Arising from this observation, electrochemical discharges are intentionally introduced to further improve MRR. And the material removal process is transformed from mere ECM to electrochemical discharge machining (ECDM). Furthermore, a novel ECDM-ECM mode is developed to eliminate the recast layer produced by discharge action. In this mode, the machining behaviour from ECM to ECDM can be altered by simply manipulating IEG distribution. Multiphysics simulations coupling electric field and flow field are conducted to better understand the mechanisms of the proposed modes. The IEG distribution, transient current behaviour, MRR, energy efficiency, surface integrity and tool wear are discussed by experiments. The ECDM-ECM mode successfully eliminates the recast layer with high MRR in a single controllable process, demonstrating its potential for producing high quality surfaces with high throughput.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"333 ","pages":"Article 118584"},"PeriodicalIF":6.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624003029","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The inter-electrode gap (IEG) is a key factor in electrochemical machining (ECM), which directly governs the electric resistance of machining and affects the flow field. In conventional electrochemical milling, the actual IEG expands with the material removal of the workpiece, which increases the electric resistance and renders the electrolyte flow ineffective in transporting the electrolytic products. In this paper, a sinking push mode for electrochemical milling is proposed to minimise the IEG, thus improving material removal rate (MRR). Under a small IEG, electrochemical discharges are observed and damages the workpiece. Arising from this observation, electrochemical discharges are intentionally introduced to further improve MRR. And the material removal process is transformed from mere ECM to electrochemical discharge machining (ECDM). Furthermore, a novel ECDM-ECM mode is developed to eliminate the recast layer produced by discharge action. In this mode, the machining behaviour from ECM to ECDM can be altered by simply manipulating IEG distribution. Multiphysics simulations coupling electric field and flow field are conducted to better understand the mechanisms of the proposed modes. The IEG distribution, transient current behaviour, MRR, energy efficiency, surface integrity and tool wear are discussed by experiments. The ECDM-ECM mode successfully eliminates the recast layer with high MRR in a single controllable process, demonstrating its potential for producing high quality surfaces with high throughput.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.