Harmonizing physical and deep learning modeling: A computationally efficient and interpretable approach for property prediction

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-09-05 DOI:10.1016/j.scriptamat.2024.116350
{"title":"Harmonizing physical and deep learning modeling: A computationally efficient and interpretable approach for property prediction","authors":"","doi":"10.1016/j.scriptamat.2024.116350","DOIUrl":null,"url":null,"abstract":"<div><p>Physical modeling and deep learning are known for their respective advantages in interpretability and computational efficiency. Nonetheless, efficiently predicting properties of metallic materials while maintaining interpretability presents a formidable challenge. This study proposes a novel solution by introducing dual-output deep learning model that simultaneously predicts stress-strain partitioning and mechanical properties through a two-component architecture. The initial component uses U-Net model trained on stress and strain partitioning generated from crystal plasticity (CP) simulations, thereby enhancing interpretability. Subsequently, this information is used to predict the properties in the second component. The prediction results demonstrate the validity of this approach, accurately predicting high stress at the martensite-martensite interface, high strain at the ferrite-martensite interface, and properties. In addition, the minimal computational cost significantly improves efficiency compared to conventional CP method. This innovative methodology represents a significant advancement, achieving harmonious balance between interpretability, computational accuracy, and efficiency in properties prediction of metallic materials.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Physical modeling and deep learning are known for their respective advantages in interpretability and computational efficiency. Nonetheless, efficiently predicting properties of metallic materials while maintaining interpretability presents a formidable challenge. This study proposes a novel solution by introducing dual-output deep learning model that simultaneously predicts stress-strain partitioning and mechanical properties through a two-component architecture. The initial component uses U-Net model trained on stress and strain partitioning generated from crystal plasticity (CP) simulations, thereby enhancing interpretability. Subsequently, this information is used to predict the properties in the second component. The prediction results demonstrate the validity of this approach, accurately predicting high stress at the martensite-martensite interface, high strain at the ferrite-martensite interface, and properties. In addition, the minimal computational cost significantly improves efficiency compared to conventional CP method. This innovative methodology represents a significant advancement, achieving harmonious balance between interpretability, computational accuracy, and efficiency in properties prediction of metallic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物理建模与深度学习建模的协调:一种计算高效、可解释的属性预测方法
物理建模和深度学习因其各自在可解释性和计算效率方面的优势而闻名。然而,如何在保持可解释性的同时高效预测金属材料的特性是一项艰巨的挑战。本研究提出了一种新颖的解决方案,即引入双输出深度学习模型,通过双组件架构同时预测应力应变分区和机械性能。初始组件使用根据晶体塑性(CP)模拟生成的应力和应变分区训练的 U-Net 模型,从而提高了可解释性。随后,这些信息被用于预测第二部分的属性。预测结果证明了这一方法的有效性,准确预测了马氏体-马氏体界面的高应力、铁素体-马氏体界面的高应变以及属性。此外,与传统的 CP 方法相比,计算成本极低,大大提高了效率。这一创新方法代表了一项重大进步,在金属材料性能预测的可解释性、计算精度和效率之间实现了和谐平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Stress increase by nanoscale hcp precipitates in HfNbTaTiZr high entropy alloys Blue to UV upconversion properties of Pr3+ doped ACaF3 (A = K, Rb, Cs) phosphors Promoting the ordering of L10-FeNi phase via chemical interactions with substrate: A molecular dynamics simulation study Effect of A-site non-stoichiometry in NaNbO3 ceramics Template-synthesizing hollow cubic CeO2/Co3O4 heterostructure as electrocatalysts for sensing hydrogen peroxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1