Zhe Cui , Jia Li , Si-Cheng Zhong , Guang-Run Tian , Zhong-Hong Zhou , Hong-Fei Jiao , Jie-Fu Xiong , Li-Chen Wang , Jun Xiang , Fu-Fa Wu , Rong-Da Zhao
{"title":"De-alloyed non-noble Fe-based alloy for hydrogen evolution reaction","authors":"Zhe Cui , Jia Li , Si-Cheng Zhong , Guang-Run Tian , Zhong-Hong Zhou , Hong-Fei Jiao , Jie-Fu Xiong , Li-Chen Wang , Jun Xiang , Fu-Fa Wu , Rong-Da Zhao","doi":"10.1016/j.scriptamat.2024.116344","DOIUrl":null,"url":null,"abstract":"<div><p>The high cost of noble metal raw materials is a major limitation to the production of hydrogen from electrocatalytic water splitting. Nowadays, the poor activity and complex synthesis methods of non-noble electrocatalysts need to be urgently improved. Herein, we prepared the Fe-Si-B alloys with nanosheet structure on the surface by de-alloying process in KOH solution. Experimental results indicate that there are lots of B-doped Fe nanosheets on the surface due to the faster dissolution rate of Fe-Si phase in the alkaline solution. The small amounts of boron remaining and the oxidation of the Fe nanosheets could enhance the activity of the hydrogen evolution reaction (HER). The HER overpotential under 10 mA/cm<sup>2</sup> is 214 mV. The coordination between elemental components and the de-alloying process not only increased the electrochemical surface area, but also enhanced electrocatalytic activity of iron atoms. This work provides a new idea for the design of Fe-based electrocatalysts.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116344"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224003786","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high cost of noble metal raw materials is a major limitation to the production of hydrogen from electrocatalytic water splitting. Nowadays, the poor activity and complex synthesis methods of non-noble electrocatalysts need to be urgently improved. Herein, we prepared the Fe-Si-B alloys with nanosheet structure on the surface by de-alloying process in KOH solution. Experimental results indicate that there are lots of B-doped Fe nanosheets on the surface due to the faster dissolution rate of Fe-Si phase in the alkaline solution. The small amounts of boron remaining and the oxidation of the Fe nanosheets could enhance the activity of the hydrogen evolution reaction (HER). The HER overpotential under 10 mA/cm2 is 214 mV. The coordination between elemental components and the de-alloying process not only increased the electrochemical surface area, but also enhanced electrocatalytic activity of iron atoms. This work provides a new idea for the design of Fe-based electrocatalysts.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.