Parameters optimization of PEMFC model based on gazelle optimization algorithm

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-09-07 DOI:10.1016/j.ijhydene.2024.09.027
{"title":"Parameters optimization of PEMFC model based on gazelle optimization algorithm","authors":"","doi":"10.1016/j.ijhydene.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><p>Fuel cells (FCs) play a crucial role in converting stored hydrogen energy into electricity. However, accurately modeling and optimizing their performance is challenging due to the lack of critical parameter data—specifically, seven key parameters including four semi-empirical coefficients (ξ1, ξ2, ξ3, ξ4), an adjusting parametric coefficient (β), a constant equivalent resistance (Rc), and an adjustable parameter (λ). These essential parameters are typically not provided in manufacturers' datasheets, creating a significant gap in the precise calibration and optimization of Proton Exchange Membrane Fuel Cells (PEMFCs).</p><p>This study addresses this gap by applying seven population-based meta-heuristic algorithms to estimate and optimize these unknown parameters. Among these, the Gazelle Optimization Algorithm (GOA) is identified as particularly effective, offering superior precision and rapid convergence. Our research evaluates the performance of these algorithms using indicators such as Standard Deviation (StD) and Sum of Squared Errors (SSE). The GOA achieved exceptionally low SSE values of 7.637606 × 10^-3, 1.28694222 × 10<sup>−2</sup>, and 2.288128 for the Horizon 500W, BCS 500W, and NedStack PS6 stacks, respectively, along with corresponding StD values of 2.275703 × 10<sup>−9</sup>, 9.12077649 × 10<sup>−15</sup>, and 3.26518838 × 10<sup>−14</sup>. These results underscore the algorithm's accuracy and effectiveness in optimizing PEMFC parameters, closely aligning with the manufacturers' polarization curves.</p><p>The study's findings, validated across these three different fuel cell stacks, highlight the GOA's superiority over other methods in terms of accuracy and convergence speed. This manuscript contributes to the field by providing a robust method for accurately optimizing PEMFC parameters, which are critical for enhancing the overall performance of fuel cells. The results also demonstrate the GOA's potential as a superior optimization tool in the field of fuel cell technology.</p></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924037339","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fuel cells (FCs) play a crucial role in converting stored hydrogen energy into electricity. However, accurately modeling and optimizing their performance is challenging due to the lack of critical parameter data—specifically, seven key parameters including four semi-empirical coefficients (ξ1, ξ2, ξ3, ξ4), an adjusting parametric coefficient (β), a constant equivalent resistance (Rc), and an adjustable parameter (λ). These essential parameters are typically not provided in manufacturers' datasheets, creating a significant gap in the precise calibration and optimization of Proton Exchange Membrane Fuel Cells (PEMFCs).

This study addresses this gap by applying seven population-based meta-heuristic algorithms to estimate and optimize these unknown parameters. Among these, the Gazelle Optimization Algorithm (GOA) is identified as particularly effective, offering superior precision and rapid convergence. Our research evaluates the performance of these algorithms using indicators such as Standard Deviation (StD) and Sum of Squared Errors (SSE). The GOA achieved exceptionally low SSE values of 7.637606 × 10^-3, 1.28694222 × 10−2, and 2.288128 for the Horizon 500W, BCS 500W, and NedStack PS6 stacks, respectively, along with corresponding StD values of 2.275703 × 10−9, 9.12077649 × 10−15, and 3.26518838 × 10−14. These results underscore the algorithm's accuracy and effectiveness in optimizing PEMFC parameters, closely aligning with the manufacturers' polarization curves.

The study's findings, validated across these three different fuel cell stacks, highlight the GOA's superiority over other methods in terms of accuracy and convergence speed. This manuscript contributes to the field by providing a robust method for accurately optimizing PEMFC parameters, which are critical for enhancing the overall performance of fuel cells. The results also demonstrate the GOA's potential as a superior optimization tool in the field of fuel cell technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于瞪羚优化算法的 PEMFC 模型参数优化
燃料电池(FC)在将储存的氢能转化为电能方面发挥着至关重要的作用。然而,由于缺乏关键参数数据,特别是七个关键参数,包括四个半经验系数(ξ1、ξ2、ξ3、ξ4)、一个可调参数系数(β)、一个恒定等效电阻(Rc)和一个可调参数(λ),因此对其性能进行精确建模和优化极具挑战性。制造商的数据表中通常不提供这些基本参数,因此在质子交换膜燃料电池(PEMFC)的精确校准和优化方面存在巨大差距。在这些算法中,Gazelle 优化算法 (GOA) 被认为特别有效,能提供卓越的精度和快速收敛。我们的研究使用标准偏差(StD)和平方误差之和(SSE)等指标对这些算法的性能进行了评估。对于 Horizon 500W、BCS 500W 和 NedStack PS6 堆栈,GOA 实现了极低的 SSE 值,分别为 7.637606 × 10^-3、1.28694222 × 10-2 和 2.288128,相应的 StD 值为 2.275703 × 10-9、9.12077649 × 10-15 和 3.26518838 × 10-14。这些结果凸显了该算法在优化 PEMFC 参数方面的准确性和有效性,并与制造商的极化曲线密切吻合。研究结果在这三种不同的燃料电池堆中得到了验证,凸显了 GOA 在准确性和收敛速度方面优于其他方法。本手稿为准确优化 PEMFC 参数提供了一种稳健的方法,对提高燃料电池的整体性能至关重要,从而为该领域做出了贡献。研究结果还证明,GOA 有潜力成为燃料电池技术领域的一种卓越优化工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
SWEL-V: A low-cost salt-water electrolyzer. Comparative analyses with the proton exchange membrane, PEM, electrolyzer Iron (III)-Facilitated reconstruction in NiMn layered double hydroxides for initiating rapid oxygen evolution reaction Sustained hydrogen production through alkaline water electrolysis using Bridgman–Stockbarger derived indium-impregnated copper chromium selenospinel A study of the catalyst layer morphology generated by electrospray: Effect of the voltage and catalyst ink aging on its performance in a proton electrolyte membrane fuel cell Ni–CaZrO3 with perovskite phase loaded on ZrO2 for CO2 methanation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1