Milad Moazzam , Giulio Cordaro , Maxime Vallet , Vincent Boemare , Nicolas Guiblin , Guilhem Dezanneau
{"title":"Study of REBa2Fe3O8+δ (RE = Pr, Nd, Sm) layered perovskites as cobalt-free electrodes for symmetrical solid oxide fuel cells","authors":"Milad Moazzam , Giulio Cordaro , Maxime Vallet , Vincent Boemare , Nicolas Guiblin , Guilhem Dezanneau","doi":"10.1016/j.ssi.2024.116689","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>RE</em>Ba<sub>2</sub>Fe<sub>3</sub>O<sub>8+δ</sub> (<em>RE</em> = Nd, Sm, Pr) perovskites are investigated as potential cobalt-free electrodes in symmetrical solid oxide fuel cells (SOFCs). After the preparation of samples by a soft chemistry route, we first characterized the intrinsic properties and then determined the electrochemical performance after the deposition of porous electrodes to obtain symmetrical cells. Analytical techniques such as X-ray diffraction (XRD) at room and high temperatures, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dilatometry (TEC), and 4-probe conductivity measurements were employed to characterize exhaustively structural, thermal and electrical properties of the samples. The electrochemical characterization was further investigated through electrochemical impedance spectroscopy (EIS) as well as fuel cell testing conducted on electrolyte-supported symmetrical cells. XRD showed that all samples have a cubic structure with the <span><math><mi>Pm</mi><mover><mn>3</mn><mo>¯</mo></mover><mi>m</mi></math></span> space group. However, during TEM experiments, it was observed that SmBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+δ</sub> presents a quintuple nano-ordering perovskite structure. Pr-based sample shows the highest electrical conductivity (68 S cm<sup>−1</sup> at 500 °C), while NdBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+δ</sub> presents the lowest area specific resistance in air (0.47 Ω cm<sup>2</sup> at 600 °C) revealing that the disordered perovskite structure is more efficient than the quintuple nano-ordered phase of SmBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+δ</sub> in the oxygen reduction reaction (ORR). The use of NdBa<sub>2</sub>Fe<sub>3</sub>O<sub>8+δ</sub> as electrodes in symmetrical cells has been demonstrated between 500 °C and 600 °C.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116689"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002376","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The REBa2Fe3O8+δ (RE = Nd, Sm, Pr) perovskites are investigated as potential cobalt-free electrodes in symmetrical solid oxide fuel cells (SOFCs). After the preparation of samples by a soft chemistry route, we first characterized the intrinsic properties and then determined the electrochemical performance after the deposition of porous electrodes to obtain symmetrical cells. Analytical techniques such as X-ray diffraction (XRD) at room and high temperatures, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dilatometry (TEC), and 4-probe conductivity measurements were employed to characterize exhaustively structural, thermal and electrical properties of the samples. The electrochemical characterization was further investigated through electrochemical impedance spectroscopy (EIS) as well as fuel cell testing conducted on electrolyte-supported symmetrical cells. XRD showed that all samples have a cubic structure with the space group. However, during TEM experiments, it was observed that SmBa2Fe3O8+δ presents a quintuple nano-ordering perovskite structure. Pr-based sample shows the highest electrical conductivity (68 S cm−1 at 500 °C), while NdBa2Fe3O8+δ presents the lowest area specific resistance in air (0.47 Ω cm2 at 600 °C) revealing that the disordered perovskite structure is more efficient than the quintuple nano-ordered phase of SmBa2Fe3O8+δ in the oxygen reduction reaction (ORR). The use of NdBa2Fe3O8+δ as electrodes in symmetrical cells has been demonstrated between 500 °C and 600 °C.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.