{"title":"First-principles investigation on phase stability of BaM2NiO5 precipitated in Ba(Zr,M)O3-δ electrolyte","authors":"Kaoru Nakamura , Masashi Mori , Yuji Okuyama","doi":"10.1016/j.ssi.2024.116687","DOIUrl":null,"url":null,"abstract":"<div><p>In protonic ceramic fuel cells using Ba(<em>Zr</em>,<em>M</em>)O<sub>3-δ</sub> (<em>M</em>: trivalent dopant elements) as the electrolyte, the precipitation of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> due to Ni diffusion from the co-sintered NiO-based electrode causes degradation of protonic ceramic fuel cells. However, Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> itself has been little studied, and even possible stable crystal structures and compositions have not been fully characterized. In this study, we investigated the dynamic and energetic stability of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> for various trivalent <em>M</em> elements by using first-principles calculations. First, dynamically stable crystal structures were determined for all compositions from phonon dispersion analysis. The formation energies showed negative values in the case of <em>M</em> = lanthanide elements, B, Ga, Tl and Y. The contribution of vibrational entropy to the formation energy of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> was insignificant, and the internal energy was dominant. The chemical bonding analysis revealed that in Ba<em>M</em><sub>2</sub>NiO<sub>5</sub>, the covalent nature of the <em>M</em>-O bond and the ionic nature of the Ba<img>O bond are dominant in the stability of the crystal structure. Precipitation of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> in Ba(<em>Zr</em>,<em>M</em>)O<sub>3-δ</sub> was suggested to be dominated by a specific threshold value of formation energy. The validity of that assumption was discussed in terms of the relationship between the factors involved in precipitation and the ionic radius of <em>M</em> element. The formation energy of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub> in <em>M</em> = lanthanide elements and Y showed a downward convex tendency with <em>M</em> = Pm as the minimum value. The reason for this was discussed in terms of the characteristics of the crystal structure of Ba<em>M</em><sub>2</sub>NiO<sub>5</sub>, suggesting that the tensile strain in the <em>M</em>-O bonds and the compressive strain in the Ni<img>O and Ba<img>O bonds relax with the ionic radius of the <em>M</em> element.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"417 ","pages":"Article 116687"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002352","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In protonic ceramic fuel cells using Ba(Zr,M)O3-δ (M: trivalent dopant elements) as the electrolyte, the precipitation of BaM2NiO5 due to Ni diffusion from the co-sintered NiO-based electrode causes degradation of protonic ceramic fuel cells. However, BaM2NiO5 itself has been little studied, and even possible stable crystal structures and compositions have not been fully characterized. In this study, we investigated the dynamic and energetic stability of BaM2NiO5 for various trivalent M elements by using first-principles calculations. First, dynamically stable crystal structures were determined for all compositions from phonon dispersion analysis. The formation energies showed negative values in the case of M = lanthanide elements, B, Ga, Tl and Y. The contribution of vibrational entropy to the formation energy of BaM2NiO5 was insignificant, and the internal energy was dominant. The chemical bonding analysis revealed that in BaM2NiO5, the covalent nature of the M-O bond and the ionic nature of the BaO bond are dominant in the stability of the crystal structure. Precipitation of BaM2NiO5 in Ba(Zr,M)O3-δ was suggested to be dominated by a specific threshold value of formation energy. The validity of that assumption was discussed in terms of the relationship between the factors involved in precipitation and the ionic radius of M element. The formation energy of BaM2NiO5 in M = lanthanide elements and Y showed a downward convex tendency with M = Pm as the minimum value. The reason for this was discussed in terms of the characteristics of the crystal structure of BaM2NiO5, suggesting that the tensile strain in the M-O bonds and the compressive strain in the NiO and BaO bonds relax with the ionic radius of the M element.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.