{"title":"Flexural wave propagation in canonical quasicrystalline-generated waveguides","authors":"Zhijiang Chen , Massimiliano Gei , Lorenzo Morini","doi":"10.1016/j.ijsolstr.2024.113050","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the propagation of harmonic flexural waves in periodic two-phase phononic multi-supported continuous beams whose elementary cells are designed according to the quasicrystalline standard Fibonacci substitution rule. The resulting dynamic frequency spectra are studied with the aid of a trace-map formalism which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission matrices: the traces of three consecutive elementary cells can be represented as a point on the surface defined by an invariant function of the square root of the circular frequency, and the recursivity implies the description of a discrete orbit on the surface. In analogy with the companion axial problem, we show that, for specific layouts of the elementary cell (the <em>canonical</em> configurations), the orbits are almost periodic. Likewise, for the same layouts, the stop-/pass-band diagrams along the frequency domain are almost periodic. Several periodic orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be investigated by linearising the trace map in the neighbourhood of the orbit. The obtained results provide a new piece of theory to better understand the dynamic behaviour of two-phase flexural periodic waveguides whose elementary cell is obtained from quasicrystalline generation rules.</p></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113050"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020768324004098/pdfft?md5=6e9f92d86384657bf287795703c5725f&pid=1-s2.0-S0020768324004098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004098","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the propagation of harmonic flexural waves in periodic two-phase phononic multi-supported continuous beams whose elementary cells are designed according to the quasicrystalline standard Fibonacci substitution rule. The resulting dynamic frequency spectra are studied with the aid of a trace-map formalism which provides a geometrical interpretation of the recursive rule governing traces of the relevant transmission matrices: the traces of three consecutive elementary cells can be represented as a point on the surface defined by an invariant function of the square root of the circular frequency, and the recursivity implies the description of a discrete orbit on the surface. In analogy with the companion axial problem, we show that, for specific layouts of the elementary cell (the canonical configurations), the orbits are almost periodic. Likewise, for the same layouts, the stop-/pass-band diagrams along the frequency domain are almost periodic. Several periodic orbits exist and each corresponds to a self-similar portion of the dynamic spectra whose scaling law can be investigated by linearising the trace map in the neighbourhood of the orbit. The obtained results provide a new piece of theory to better understand the dynamic behaviour of two-phase flexural periodic waveguides whose elementary cell is obtained from quasicrystalline generation rules.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.