Investigation of dynamic impact behavior of bighorn sheep horn

IF 3.4 3区 工程技术 Q1 MECHANICS International Journal of Solids and Structures Pub Date : 2024-11-06 DOI:10.1016/j.ijsolstr.2024.113133
Emre Palta , Howie Fang , Qian Wang , Zheng Li
{"title":"Investigation of dynamic impact behavior of bighorn sheep horn","authors":"Emre Palta ,&nbsp;Howie Fang ,&nbsp;Qian Wang ,&nbsp;Zheng Li","doi":"10.1016/j.ijsolstr.2024.113133","DOIUrl":null,"url":null,"abstract":"<div><div>The horn of the bighorn sheep is composed of keratin-based biological material that has a tubule-lamella structure, which gives it anisotropic hardening properties under impact loading. This paper aims to investigate the energy dissipation mechanisms inherent in bighorn sheep horns by developing a numerical material model that accounts for the horn’s anisotropic features and strain-rate effects. To this end, a transversely isotropic constitutive model, which includes both anisotropic hardening and strain-rate effects, was formulated to accurately predict the mechanical behavior of bighorn sheep horns. Material characterization was conducted through uniaxial compression tests that were conducted under quasi-static and dynamic conditions. The developed constitutive model was implemented into LS-Dyna via a user-defined material subroutine and was validated against empirical data. The validated numerical model was used to investigate the horn’s mechanical responses under dynamic loading conditions. The paper focused on impact energy dissipation mechanisms, including energy absorption and transition, stress distribution, and displacement wave propagation. The insights gained from this paper are expected to significantly contribute to the development of novel artificial materials with enhanced energy absorption and impact mitigation properties.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"307 ","pages":"Article 113133"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002076832400492X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The horn of the bighorn sheep is composed of keratin-based biological material that has a tubule-lamella structure, which gives it anisotropic hardening properties under impact loading. This paper aims to investigate the energy dissipation mechanisms inherent in bighorn sheep horns by developing a numerical material model that accounts for the horn’s anisotropic features and strain-rate effects. To this end, a transversely isotropic constitutive model, which includes both anisotropic hardening and strain-rate effects, was formulated to accurately predict the mechanical behavior of bighorn sheep horns. Material characterization was conducted through uniaxial compression tests that were conducted under quasi-static and dynamic conditions. The developed constitutive model was implemented into LS-Dyna via a user-defined material subroutine and was validated against empirical data. The validated numerical model was used to investigate the horn’s mechanical responses under dynamic loading conditions. The paper focused on impact energy dissipation mechanisms, including energy absorption and transition, stress distribution, and displacement wave propagation. The insights gained from this paper are expected to significantly contribute to the development of novel artificial materials with enhanced energy absorption and impact mitigation properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大角羊角动态冲击行为调查
大角羊的角由角蛋白生物材料组成,具有小管-拉梅拉结构,这使其在冲击载荷下具有各向异性的硬化特性。本文旨在通过建立一个考虑到羊角各向异性特征和应变率效应的数值材料模型,研究大角羊角固有的能量耗散机制。为此,本文建立了一个横向各向同性构成模型,其中包括各向异性硬化和应变速率效应,以准确预测大角羊角的机械行为。通过在准静态和动态条件下进行的单轴压缩试验对材料特性进行了分析。通过用户定义的材料子程序将所开发的构成模型应用于 LS-Dyna,并根据经验数据进行了验证。经过验证的数值模型用于研究动态加载条件下喇叭的机械响应。论文的重点是冲击能量耗散机制,包括能量吸收和转换、应力分布和位移波传播。从本文中获得的见解有望为开发具有更强能量吸收和冲击缓解性能的新型人工材料做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
期刊最新文献
Editorial Board Stability discussion and application study of pseudo-corner models A new porous constitutive model for additively manufactured PLA Defect dynamics modeling of mesoscale plasticity Investigation of dynamic impact behavior of bighorn sheep horn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1