Multi-granularity acoustic information fusion for sound event detection

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Signal Processing Pub Date : 2024-09-03 DOI:10.1016/j.sigpro.2024.109691
Han Yin , Jianfeng Chen , Jisheng Bai , Mou Wang , Susanto Rahardja , Dongyuan Shi , Woon-seng Gan
{"title":"Multi-granularity acoustic information fusion for sound event detection","authors":"Han Yin ,&nbsp;Jianfeng Chen ,&nbsp;Jisheng Bai ,&nbsp;Mou Wang ,&nbsp;Susanto Rahardja ,&nbsp;Dongyuan Shi ,&nbsp;Woon-seng Gan","doi":"10.1016/j.sigpro.2024.109691","DOIUrl":null,"url":null,"abstract":"<div><p>Most previous works on sound event detection (SED) are based on binary hard labels of sound events, leaving other scales of information underexplored. To address this problem, we introduce multiple granularities of knowledge into the system to perform hierarchical acoustic information fusion for SED. Specifically, we present an interactive dual-conformer (IDC) module to adaptively fuse the medium-grained and fine-grained acoustic information based on the hard and soft labels of sound events. In addition, we propose a scene-dependent mask estimator (SDME) module to extract the coarse-grained information from acoustic scenes, introducing the scene-event relationships into the SED system. Experimental results show that the proposed IDC and SDME modules efficiently fuse the acoustic information at different scales and therefore further improve the SED performance. The proposed system achieved Top 1 performance in DCASE 2023 Challenge Task 4B.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109691"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003116","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Most previous works on sound event detection (SED) are based on binary hard labels of sound events, leaving other scales of information underexplored. To address this problem, we introduce multiple granularities of knowledge into the system to perform hierarchical acoustic information fusion for SED. Specifically, we present an interactive dual-conformer (IDC) module to adaptively fuse the medium-grained and fine-grained acoustic information based on the hard and soft labels of sound events. In addition, we propose a scene-dependent mask estimator (SDME) module to extract the coarse-grained information from acoustic scenes, introducing the scene-event relationships into the SED system. Experimental results show that the proposed IDC and SDME modules efficiently fuse the acoustic information at different scales and therefore further improve the SED performance. The proposed system achieved Top 1 performance in DCASE 2023 Challenge Task 4B.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多粒度声学信息融合用于声音事件检测
以往的声音事件检测(SED)工作大多基于声音事件的二进制硬标签,而对其他尺度的信息未作充分探索。为解决这一问题,我们在系统中引入了多粒度知识,为 SED 进行分层声学信息融合。具体来说,我们提出了一个交互式双变换器(IDC)模块,根据声音事件的硬标签和软标签,自适应地融合中粒度和细粒度声学信息。此外,我们还提出了一个场景相关掩码估计器(SDME)模块,用于从声学场景中提取粗粒度信息,将场景-事件关系引入 SED 系统。实验结果表明,所提出的 IDC 和 SDME 模块有效地融合了不同尺度的声学信息,从而进一步提高了 SED 的性能。所提出的系统在 DCASE 2023 挑战任务 4B 中取得了前 1 名的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
期刊最新文献
Distributed filtering with time-varying topology: A temporal-difference learning approach in dual games Editorial Board MABDT: Multi-scale attention boosted deformable transformer for remote sensing image dehazing A new method for judging thermal image quality with applications Learning feature-weighted regularization discriminative correlation filters for real-time UAV tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1