Mingcheng Fu , Zhi Zheng , Wen-Qin Wang , Min Xiang
{"title":"Robust adaptive beamforming for cylindrical uniform conformal arrays based on low-rank covariance matrix reconstruction","authors":"Mingcheng Fu , Zhi Zheng , Wen-Qin Wang , Min Xiang","doi":"10.1016/j.sigpro.2024.109687","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, conformal arrays have attracted considerable interest because such arrays can provide reduced radar cross-section and increased angle coverage. In this article, we devise a robust adaptive beamforming (RAB) approach using cylindrical uniform conformal array (CUCA). Firstly, we derive the minimum variance distortionless response (MVDR) beamformer for the CUCA by utilizing the noise subspace of interference covariance matrix (ICM) and steering vector (SV) of the signal-of-interest (SOI). Subsequently, the ICM is reconstructed by estimating the noise-free covariance matrix of the CUCA outputs and the interference projection matrix. Specifically, the noise-free covariance matrix can be regarded as multiple low-rank covariance matrices, and each low-rank matrix is reconstructed by formulating a nuclear norm minimization (NNM) problem. With the reconstructed covariance matrix, the 2-D DOAs of sources are determined by employing 2-D MUSIC spectrum to form the interference projection matrix. In addition, the SOI SV is estimated by solving a quadratically constrained quadratic programming (QCQP) problem. Numerical results demonstrate that the proposed approach is obviously superior to the existing RAB techniques.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109687"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003074","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, conformal arrays have attracted considerable interest because such arrays can provide reduced radar cross-section and increased angle coverage. In this article, we devise a robust adaptive beamforming (RAB) approach using cylindrical uniform conformal array (CUCA). Firstly, we derive the minimum variance distortionless response (MVDR) beamformer for the CUCA by utilizing the noise subspace of interference covariance matrix (ICM) and steering vector (SV) of the signal-of-interest (SOI). Subsequently, the ICM is reconstructed by estimating the noise-free covariance matrix of the CUCA outputs and the interference projection matrix. Specifically, the noise-free covariance matrix can be regarded as multiple low-rank covariance matrices, and each low-rank matrix is reconstructed by formulating a nuclear norm minimization (NNM) problem. With the reconstructed covariance matrix, the 2-D DOAs of sources are determined by employing 2-D MUSIC spectrum to form the interference projection matrix. In addition, the SOI SV is estimated by solving a quadratically constrained quadratic programming (QCQP) problem. Numerical results demonstrate that the proposed approach is obviously superior to the existing RAB techniques.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.