Modelling the comparative influence of conjugation and transformation on plasmid spread in biofilms

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2024-08-20 DOI:10.1016/j.matcom.2024.08.018
Julien Vincent , Alberto Tenore , Maria Rosaria Mattei , Luigi Frunzo
{"title":"Modelling the comparative influence of conjugation and transformation on plasmid spread in biofilms","authors":"Julien Vincent ,&nbsp;Alberto Tenore ,&nbsp;Maria Rosaria Mattei ,&nbsp;Luigi Frunzo","doi":"10.1016/j.matcom.2024.08.018","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a multidimensional continuum model for plasmid dissemination in biofilms via horizontal gene transfer. The model is formulated as a system of nonlocal partial differential equations derived from mass conservation laws and reaction kinetics principles. Biofilm is modelled as a homogeneous, viscous, incompressible fluid with a velocity given by Darcy’s law. The model considers plasmid-carrying cells as distinct volume fractions and their vertical and horizontal gene transfer via conjugation and natural transformation. The model encompasses local detoxification of biofilm due to plasmid-borne resistance gene and its effect at the community scale. The equations are solved numerically and simulations are performed to investigate how transformation and conjugation regulate the dynamics and the ecology of plasmid spread in both a multidimensional and one-dimensional biofilm system. Model results are able to predict relevant experimentally observed results in plasmid spread, such as the respective intensity of different horizontal gene transfer mechanisms and the importance of selective pressure. Moreover, model results predict coexistence of plasmid-carrying and plasmid-free bacteria even in conditions when one should out-compete the other, offering a simple modelling explanation on global plasmid persistence in bacterial communities.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"228 ","pages":"Pages 156-177"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003203/pdfft?md5=e7ff43680b5d4c4c9620aedc92a8950f&pid=1-s2.0-S0378475424003203-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003203","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a multidimensional continuum model for plasmid dissemination in biofilms via horizontal gene transfer. The model is formulated as a system of nonlocal partial differential equations derived from mass conservation laws and reaction kinetics principles. Biofilm is modelled as a homogeneous, viscous, incompressible fluid with a velocity given by Darcy’s law. The model considers plasmid-carrying cells as distinct volume fractions and their vertical and horizontal gene transfer via conjugation and natural transformation. The model encompasses local detoxification of biofilm due to plasmid-borne resistance gene and its effect at the community scale. The equations are solved numerically and simulations are performed to investigate how transformation and conjugation regulate the dynamics and the ecology of plasmid spread in both a multidimensional and one-dimensional biofilm system. Model results are able to predict relevant experimentally observed results in plasmid spread, such as the respective intensity of different horizontal gene transfer mechanisms and the importance of selective pressure. Moreover, model results predict coexistence of plasmid-carrying and plasmid-free bacteria even in conditions when one should out-compete the other, offering a simple modelling explanation on global plasmid persistence in bacterial communities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟共轭和转化对质粒在生物膜中传播的比较影响
在这项工作中,我们提出了一个通过水平基因转移在生物膜中传播质粒的多维连续模型。该模型是根据质量守恒定律和反应动力学原理推导出的非局部偏微分方程系统。生物膜被模拟为均质的、粘性的、不可压缩的流体,其速度由达西定律给出。该模型将携带质粒的细胞视为不同的体积分数,并通过共轭和自然转化进行纵向和横向基因转移。该模型包括质粒携带的抗性基因对生物膜的局部解毒作用及其对群落尺度的影响。通过对方程进行数值求解和模拟,研究了转化和共轭如何在多维和一维生物膜系统中调节质粒传播的动力学和生态学。模型结果能够预测实验观察到的质粒传播的相关结果,如不同水平基因转移机制各自的强度和选择性压力的重要性。此外,模型结果还预测了携带质粒和不携带质粒的细菌共存的情况,即使在其中一种细菌的竞争能力超过另一种细菌的情况下也是如此,这为细菌群落中全球质粒的持久性提供了一个简单的模型解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
An innovative fractional grey system model and its application Large time solution for collisional breakage model: Laplace transformation based accelerated homotopy perturbation method Efficient second-order accurate exponential time differencing for time-fractional advection–diffusion–reaction equations with variable coefficients Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1