Synthesis of a MOF derived porous graphene and pyrolytic carbon supported zinc stannate nanohybrid electrode with enhanced lithium-ion storage performances

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-09-05 DOI:10.1016/j.mtsust.2024.100967
{"title":"Synthesis of a MOF derived porous graphene and pyrolytic carbon supported zinc stannate nanohybrid electrode with enhanced lithium-ion storage performances","authors":"","doi":"10.1016/j.mtsust.2024.100967","DOIUrl":null,"url":null,"abstract":"<div><p>Compositing nano-sized zinc stannate (Zn<sub>2</sub>SnO<sub>4</sub>) with supportive carbon skeleton usually brings in improved lithium-ion storage performances. One of the most challenging tasks is to effectively stabilize Zn<sub>2</sub>SnO<sub>4</sub> nanocrystals via simplified preparation routes from eco-friendly raw materials. In this work, the water-soluble natural molecule gallic acid (GA) is directly employed to coordinate with Zn<sup>2+</sup>/Sn<sup>2+</sup> ions, and the corresponding metal-organic framework (MOF) precursor samples of pure Zn-GA MOF and bimetallic ZnSn-GA MOF can be synthesized. The Zn-GA MOF and ZnSn-GA MOF precursors are further converted to a three-dimensional (3D) porous graphene sample (ZMG) and a pyrolytic carbon domain supported Zn<sub>2</sub>SnO<sub>4</sub> nanocomposite (Zn<sub>2</sub>SnO<sub>4</sub>@C), respectively, by taking the advantages of the unique micro-structures and compositions of MOF materials. By rationally mixing the ZMG and Zn<sub>2</sub>SnO<sub>4</sub>@C in electrode fabrication, the finally obtained Zn<sub>2</sub>SnO<sub>4</sub>@C/ZMG nanohybrid electrode exhibits a high reversible capacity of 1117 mAh·g<sup>−1</sup> after 500 cycles at a current density of 1000 mA g<sup>−1</sup> in half-cells as well as inspiring full-cell performance. The favorable synergistic effect in lithium-ion storage for the Zn<sub>2</sub>SnO<sub>4</sub>@C/ZMG electrode has been investigated. The MOF derived samples and involved sustainable synthesis protocols can be further developed for wider applications.</p></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003038","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Compositing nano-sized zinc stannate (Zn2SnO4) with supportive carbon skeleton usually brings in improved lithium-ion storage performances. One of the most challenging tasks is to effectively stabilize Zn2SnO4 nanocrystals via simplified preparation routes from eco-friendly raw materials. In this work, the water-soluble natural molecule gallic acid (GA) is directly employed to coordinate with Zn2+/Sn2+ ions, and the corresponding metal-organic framework (MOF) precursor samples of pure Zn-GA MOF and bimetallic ZnSn-GA MOF can be synthesized. The Zn-GA MOF and ZnSn-GA MOF precursors are further converted to a three-dimensional (3D) porous graphene sample (ZMG) and a pyrolytic carbon domain supported Zn2SnO4 nanocomposite (Zn2SnO4@C), respectively, by taking the advantages of the unique micro-structures and compositions of MOF materials. By rationally mixing the ZMG and Zn2SnO4@C in electrode fabrication, the finally obtained Zn2SnO4@C/ZMG nanohybrid electrode exhibits a high reversible capacity of 1117 mAh·g−1 after 500 cycles at a current density of 1000 mA g−1 in half-cells as well as inspiring full-cell performance. The favorable synergistic effect in lithium-ion storage for the Zn2SnO4@C/ZMG electrode has been investigated. The MOF derived samples and involved sustainable synthesis protocols can be further developed for wider applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成具有增强锂离子存储性能的 MOF 衍生多孔石墨烯和热解碳支撑锡酸锌纳米混合电极
将纳米尺寸的锡酸锌(Zn2SnO4)与支持性碳骨架复合在一起通常能提高锂离子存储性能。其中最具挑战性的任务之一是如何通过简化的制备路线,利用环保原料有效地稳定 Zn2SnO4 纳米晶体。本研究直接利用水溶性天然分子没食子酸(GA)与 Zn2+/Sn2+ 离子配位,合成了相应的金属有机框架(MOF)前体样品,包括纯 Zn-GA MOF 和双金属 ZnSn-GA MOF。Zn-GA MOF 和 ZnSn-GA MOF 前驱体利用 MOF 材料独特的微观结构和成分优势,分别进一步转化为三维(3D)多孔石墨烯样品(ZMG)和热解碳域支撑的 Zn2SnO4 纳米复合材料(Zn2SnO4@C)。通过在电极制造过程中合理混合 ZMG 和 Zn2SnO4@C,最终得到的 Zn2SnO4@C/ZMG 纳米杂化电极在电流密度为 1000 mA g-1 的半电池条件下循环 500 次后,显示出 1117 mAh-g-1 的高可逆容量以及令人振奋的全电池性能。研究还探讨了 Zn2SnO4@C/ZMG 电极在锂离子存储中的协同效应。MOF 衍生样品和相关的可持续合成方案可进一步开发,以实现更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Graphene oxide-containing chitosan@HKUST-1 beads with increased chemical stability for CO2 capture Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation Enhanced dopamine detection using Ti3C2Tx/rGO/Pt ternary composite synthesized via microwave-assisted hydrothermal method Layered silicate PLS-3 with PREFER structure supported Pd nanoparticles: A recyclable catalyst for the synthesis of furfuryl ethyl ether The deformation mechanism of low symmetric Ti–Pt intermetallic compounds containing high density of planar defects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1