Boheng Liu , Yongli Zhang , Xiaoyun Yi , Haitao Zheng , Kang Ni , Qingxu Ma , Yanjiang Cai , Lifeng Ma , Yuanzhi Shi , Xiangde Yang , Jianyun Ruan
{"title":"Partially replacing chemical fertilizer with manure improves soil quality and ecosystem multifunctionality in a tea plantation","authors":"Boheng Liu , Yongli Zhang , Xiaoyun Yi , Haitao Zheng , Kang Ni , Qingxu Ma , Yanjiang Cai , Lifeng Ma , Yuanzhi Shi , Xiangde Yang , Jianyun Ruan","doi":"10.1016/j.agee.2024.109284","DOIUrl":null,"url":null,"abstract":"<div><p>Substituting chemical fertilizer with organic alternatives has been proven to improve soil fertility and crop yield and mitigate adverse environmental effects. However, the impact of different organic materials, such as animal-sourced organic fertilizer (AOF) and plant-sourced organic fertilizer (POF), on soil quality index (SQI) and ecosystem multifunctionality (EMF) in perennial systems like tea plantations remains unclear. This study evaluated the impact of partially substituting (30 %) chemical fertilizer with AOF (SM, sheep manure; PM, pig manure; CM, cow manure) and POF (SC, soybean cake) on soil properties, enzyme activity, enzyme stoichiometry, SQI, and EMF in a tea plantation of China. Partial substitution with AOF improved soil pH, total C content, and β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase activities. In contrast, chemical fertilizer alone (CF) and POF substitution reduced these parameters. Compared with the control, CF, and POF, AOF substitution treatments effectively alleviated soil microbial C limitation but increased N limitation. Additionally, all fertilizer treatments enhanced the SQI and EMF of the tea plantation. Among the organic treatments, partial substitution with AOF resulted in the maximum increase in SQI (60 %–134 %) and EMF (157 %–177 %) compared with no fertilization, while POF substitution resulted in a comparatively lower improvement (53 % in SQI and 50 % in EMF). Random forest modeling identified five soil variables and eight enzyme variables as key contributors to the differences in EMF under partial organic substitution. Partial least squares path modeling further revealed that the changes in enzyme properties and microbial metabolic limitations directly influenced EMF in these treatments. Thus, the study proves that partially substituting chemical fertilizers with organic fertilizers, especially composted manure, enhances the soil quality and ecosystem functionality of tea plantations. These findings provide a scientific basis for developing effective soil management strategies to improve crop production sustainably.</p></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"378 ","pages":"Article 109284"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016788092400402X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Substituting chemical fertilizer with organic alternatives has been proven to improve soil fertility and crop yield and mitigate adverse environmental effects. However, the impact of different organic materials, such as animal-sourced organic fertilizer (AOF) and plant-sourced organic fertilizer (POF), on soil quality index (SQI) and ecosystem multifunctionality (EMF) in perennial systems like tea plantations remains unclear. This study evaluated the impact of partially substituting (30 %) chemical fertilizer with AOF (SM, sheep manure; PM, pig manure; CM, cow manure) and POF (SC, soybean cake) on soil properties, enzyme activity, enzyme stoichiometry, SQI, and EMF in a tea plantation of China. Partial substitution with AOF improved soil pH, total C content, and β-1,4-glucosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase activities. In contrast, chemical fertilizer alone (CF) and POF substitution reduced these parameters. Compared with the control, CF, and POF, AOF substitution treatments effectively alleviated soil microbial C limitation but increased N limitation. Additionally, all fertilizer treatments enhanced the SQI and EMF of the tea plantation. Among the organic treatments, partial substitution with AOF resulted in the maximum increase in SQI (60 %–134 %) and EMF (157 %–177 %) compared with no fertilization, while POF substitution resulted in a comparatively lower improvement (53 % in SQI and 50 % in EMF). Random forest modeling identified five soil variables and eight enzyme variables as key contributors to the differences in EMF under partial organic substitution. Partial least squares path modeling further revealed that the changes in enzyme properties and microbial metabolic limitations directly influenced EMF in these treatments. Thus, the study proves that partially substituting chemical fertilizers with organic fertilizers, especially composted manure, enhances the soil quality and ecosystem functionality of tea plantations. These findings provide a scientific basis for developing effective soil management strategies to improve crop production sustainably.
期刊介绍:
Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.