Ting Li, Yi Peng., Hang You, Xiaoya Guan, Jin Lv, Chong Yang
{"title":"Recent Developments in the Fabrication and Application of Superhydrophobic Suraces","authors":"Ting Li, Yi Peng., Hang You, Xiaoya Guan, Jin Lv, Chong Yang","doi":"10.1002/tcr.202400065","DOIUrl":null,"url":null,"abstract":"<p>A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 9","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202400065","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A superhydrophobic surface is defined as having a contact angle exceeding 150 °C, indicating a remarkable ability to repel water. Generally, superhydrophobicity originates from the utilization of low-surface-energy materials with unique micro- and nanostructures. Superhydrophobic surfaces have gained considerable recognition and are widely employed in diverse areas for anti-icing, oil-water separation, anticorrosion, self-cleaning, blood-repellent, and antibacterial applications. These surfaces can greatly enhance industrial processes by yielding significant performance improvements. In this review, we introduce the basic theories that provide a foundation for understanding the hydrophobic properties of superhydrophobic surfaces. We then discuss current techniques for fabricating superhydrophobic coatings, critically analyzing their strengths and limitations. Furthermore, we provide an overview of recent progress in the application of superhydrophobic materials. Finally, we summarize the challenges in developing superhydrophobic materials and future trends in this field. The insights provided by this review can help researchers understand the basic knowledge of superhydrophobic surfaces and obtain the latest progress and challenges in the application of superhydrophobic surfaces. It provides help for further research and practical application of superhydrophobic surfaces.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.