Ultra-high-cardinality geometric shaping in the finite SNR regime.

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Pub Date : 2024-10-23 Epub Date: 2024-09-09 DOI:10.1098/rsta.2024.0059
Sebastiaan Goossens, Yunus Can Gültekin, Olga Vassilieva, Inwoong Kim, Paparao Palacharla, Chigo Okonkwo, Alex Alvarado
{"title":"Ultra-high-cardinality geometric shaping in the finite SNR regime.","authors":"Sebastiaan Goossens, Yunus Can Gültekin, Olga Vassilieva, Inwoong Kim, Paparao Palacharla, Chigo Okonkwo, Alex Alvarado","doi":"10.1098/rsta.2024.0059","DOIUrl":null,"url":null,"abstract":"<p><p>Four-dimensional (4D) constellations with up to 131 072 points (17 bit/4D-sym) are designed for the first time using geometric shaping. The constellations are optimized in terms of mutual information (MI) and generalized MI (GMI) for the additive white Gaussian noise (AWGN) channel, targeting a forward error correction (FEC) rate of 0.8 at finite signal-to-noise ratios. The presented 15-17 bit constellations are currently the highest-performing constellations in the literature, having a gap to the AWGN capacity as low as 0.17 dB (MI) and 0.45 dB (GMI) at 17 bit/4D-sym. For lower cardinalities, our constellations match or closely approach the performance of previously published optimized constellations. We also show that (GMI-)optimized constellations with a symmetry constraint, optimized for a FEC rate of 0.8, perform nearly identical to their unconstrained counterparts for cardinalities above 8 bit/4D-sym. A symmetry constraint for MI-optimized constellations is shown to have a negative impact in general. The proposed procedure relies on a Monte-Carlo-based approach for evaluating performance and is extendable to other (nonlinear) channels. Stochastic gradient descent is used for the optimization algorithm for which the gradients are computed using automatic differentiation. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2281","pages":"20240059"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0059","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Four-dimensional (4D) constellations with up to 131 072 points (17 bit/4D-sym) are designed for the first time using geometric shaping. The constellations are optimized in terms of mutual information (MI) and generalized MI (GMI) for the additive white Gaussian noise (AWGN) channel, targeting a forward error correction (FEC) rate of 0.8 at finite signal-to-noise ratios. The presented 15-17 bit constellations are currently the highest-performing constellations in the literature, having a gap to the AWGN capacity as low as 0.17 dB (MI) and 0.45 dB (GMI) at 17 bit/4D-sym. For lower cardinalities, our constellations match or closely approach the performance of previously published optimized constellations. We also show that (GMI-)optimized constellations with a symmetry constraint, optimized for a FEC rate of 0.8, perform nearly identical to their unconstrained counterparts for cardinalities above 8 bit/4D-sym. A symmetry constraint for MI-optimized constellations is shown to have a negative impact in general. The proposed procedure relies on a Monte-Carlo-based approach for evaluating performance and is extendable to other (nonlinear) channels. Stochastic gradient descent is used for the optimization algorithm for which the gradients are computed using automatic differentiation. This article is part of the theme issue 'Celebrating the 15th anniversary of the Royal Society Newton International Fellowship'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限信噪比条件下的超高心率几何整形。
利用几何整形技术首次设计了多达 131 072 个点(17 位/4D-sym)的四维(4D)星座。这些星座针对加性白高斯噪声(AWGN)信道的互信息(MI)和广义 MI(GMI)进行了优化,目标是在有限信噪比条件下实现 0.8 的前向纠错(FEC)率。所提出的 15-17 位星座是目前文献中性能最高的星座,在 17 位/4D-sym 时与 AWGN 容量的差距低至 0.17 dB(MI)和 0.45 dB(GMI)。对于较低的心数,我们的星座与之前发布的优化星座性能相当或接近。我们还表明,针对 0.8 的 FEC 速率进行优化的具有对称性约束的(GMI)优化星座,在 8 位/4D-sym 以上的心率下,其性能几乎与无约束的同类星座相同。经 MI 优化的星座对称约束一般会产生负面影响。所提出的程序依靠基于蒙特卡洛的方法来评估性能,并可扩展到其他(非线性)信道。优化算法采用随机梯度下降法,梯度是通过自动微分计算得出的。本文是 "庆祝英国皇家学会牛顿国际奖学金 15 周年 "主题期刊的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
期刊最新文献
Addressing the urban congestion challenge based on traffic bottlenecks. Analysing macroscopic traffic rhythms and city size in affluent cities: insights from a global panel data of 25 cities. Artefact design and societal worldview. Cities beyond proximity. Mapping sidewalk accessibility with smartphone imagery and Visual AI: a participatory approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1