Louise M Kimpton, L Mihaela Paun, Mitchel J Colebank, Victoria Volodina
{"title":"Challenges and opportunities in uncertainty quantification for healthcare and biological systems.","authors":"Louise M Kimpton, L Mihaela Paun, Mitchel J Colebank, Victoria Volodina","doi":"10.1098/rsta.2024.0232","DOIUrl":null,"url":null,"abstract":"<p><p>Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and <i>digital twins</i>, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2292","pages":"20240232"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0232","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and digital twins, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.