A machine learning-based prediction model for architectural heritage: The case of domed Sinan mosques

Orkan Zeynel Güzelci , Sema Alaçam , Baver Bekiroğlu , Ilker Karadag
{"title":"A machine learning-based prediction model for architectural heritage: The case of domed Sinan mosques","authors":"Orkan Zeynel Güzelci ,&nbsp;Sema Alaçam ,&nbsp;Baver Bekiroğlu ,&nbsp;Ilker Karadag","doi":"10.1016/j.daach.2024.e00370","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a machine learning-based prediction model (PM) customized to predict missing components of historical mosques. Domed mosques built by Architect Sinan during the Classical Ottoman Period (16th century) are selected due to their distinctive features and stylistic similarities. The model development process includes data collection (46 domed Sinan mosques), data preparation and refinement, training, testing, and validation. The Pix2Pix method is used to train and validate the machine learning models, and the Structural Similarity (SSIM) metric is used to objectively evaluate the outcomes. Preliminary results indicate that the success of the PMs is not directly proportional to the number of input components. Instead, factors such as overall mass organization, the curvature of the dome, and the number of balconies on the minaret play crucial roles in determining the success of the outcomes.</p></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"35 ","pages":"Article e00370"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054824000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a machine learning-based prediction model (PM) customized to predict missing components of historical mosques. Domed mosques built by Architect Sinan during the Classical Ottoman Period (16th century) are selected due to their distinctive features and stylistic similarities. The model development process includes data collection (46 domed Sinan mosques), data preparation and refinement, training, testing, and validation. The Pix2Pix method is used to train and validate the machine learning models, and the Structural Similarity (SSIM) metric is used to objectively evaluate the outcomes. Preliminary results indicate that the success of the PMs is not directly proportional to the number of input components. Instead, factors such as overall mass organization, the curvature of the dome, and the number of balconies on the minaret play crucial roles in determining the success of the outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的建筑遗产预测模型:锡南圆顶清真寺案例
本研究介绍了一种基于机器学习的预测模型(PM),该模型是为预测历史清真寺的缺失组件而定制的。研究选择了由建筑师锡南在奥斯曼帝国古典时期(16 世纪)建造的圆顶清真寺,因为这些清真寺具有独特的特征和风格相似性。模型开发过程包括数据收集(46 座锡南圆顶清真寺)、数据准备和完善、训练、测试和验证。Pix2Pix 方法用于训练和验证机器学习模型,结构相似度(SSIM)指标用于客观评估结果。初步结果表明,PM 的成功与否与输入组件的数量并不成正比。相反,整体质量组织、穹顶的曲率和尖塔上阳台的数量等因素在决定结果的成功与否方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
33
期刊最新文献
A holistic methodology for the assessment of Heritage Digital Twin applied to Portuguese case studies Mapping rib-webbing connections in Late Gothic net vaults: A geometry-based typology Architectural simulation from point clouds: Between precision and historical validity Hybrid method for enhancement of low-resolution ancient Kannada Stone Inscription images Combination of LiDAR detection and green integral method for calculating irregular cross-section geometric properties of deteriorated components in timber historic buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1