DCSGMDA: A dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations
{"title":"DCSGMDA: A dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations","authors":"Xu Cao, Pengli Lu","doi":"10.1016/j.compbiolchem.2024.108201","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous studies have shown that microRNAs (miRNAs) play a key role in human diseases as critical biomarkers. Its abnormal expression is often accompanied by the emergence of specific diseases. Therefore, studying the relationship between miRNAs and diseases can deepen the insights of their pathogenesis, grasp the process of disease onset and development, and promote drug research of specific diseases. However, many undiscovered relationships between miRNAs and diseases remain, significantly limiting research on miRNA-disease correlations. To explore more potential correlations, we propose a dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations (DCSGMDA). Firstly, we constructed similarity networks for miRNAs and diseases, as well as an association relationship network. Secondly, potential features were fully mined using stacked deep learning and gradient decomposition networks, along with dual-channel convolutional neural networks. Finally, correlations were scored by a multilayer perceptron. We performed 5-fold and 10-fold cross-validation experiments on DCSGMDA using two datasets based on the Human MicroRNA Disease Database (HMDD). Additionally, parametric, ablation, and comparative experiments, along with case studies, were conducted. The experimental results demonstrate that DCSGMDA performs well in predicting miRNA-disease associations.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108201"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001890","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have shown that microRNAs (miRNAs) play a key role in human diseases as critical biomarkers. Its abnormal expression is often accompanied by the emergence of specific diseases. Therefore, studying the relationship between miRNAs and diseases can deepen the insights of their pathogenesis, grasp the process of disease onset and development, and promote drug research of specific diseases. However, many undiscovered relationships between miRNAs and diseases remain, significantly limiting research on miRNA-disease correlations. To explore more potential correlations, we propose a dual-channel convolutional model based on stacked deep learning collaborative gradient decomposition for predicting miRNA-disease associations (DCSGMDA). Firstly, we constructed similarity networks for miRNAs and diseases, as well as an association relationship network. Secondly, potential features were fully mined using stacked deep learning and gradient decomposition networks, along with dual-channel convolutional neural networks. Finally, correlations were scored by a multilayer perceptron. We performed 5-fold and 10-fold cross-validation experiments on DCSGMDA using two datasets based on the Human MicroRNA Disease Database (HMDD). Additionally, parametric, ablation, and comparative experiments, along with case studies, were conducted. The experimental results demonstrate that DCSGMDA performs well in predicting miRNA-disease associations.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.