R$^{3}$3LIVE++: A Robust, Real-Time, Radiance Reconstruction Package With a Tightly-Coupled LiDAR-Inertial-Visual State Estimator

Jiarong Lin;Fu Zhang
{"title":"R$^{3}$3LIVE++: A Robust, Real-Time, Radiance Reconstruction Package With a Tightly-Coupled LiDAR-Inertial-Visual State Estimator","authors":"Jiarong Lin;Fu Zhang","doi":"10.1109/TPAMI.2024.3456473","DOIUrl":null,"url":null,"abstract":"This work proposed a LiDAR-inertial-visual fusion framework termed R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE++ to achieve robust and accurate state estimation while simultaneously reconstructing the radiance map on the fly. R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE++ consists of a LiDAR-inertial odometry (LIO) and a visual-inertial odometry (VIO), both running in real-time. The LIO subsystem utilizes the measurements from a LiDAR for reconstructing the geometric structure, while the VIO subsystem simultaneously recovers the radiance information of the geometric structure from the input images. R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE++ is developed based on R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE and further improves the accuracy in localization and mapping by accounting for the camera photometric calibration and the online estimation of camera exposure time. We conduct more extensive experiments on public and self-collected datasets to compare our proposed system against other state-of-the-art SLAM systems. Quantitative and qualitative results show that R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE++ has significant improvements over others in both accuracy and robustness. Moreover, to demonstrate the extendability of R\n<inline-formula><tex-math>$^{3}$</tex-math></inline-formula>\nLIVE++, we developed several applications based on our reconstructed maps, such as high dynamic range (HDR) imaging, virtual environment exploration, and 3D video gaming.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11168-11185"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669796/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposed a LiDAR-inertial-visual fusion framework termed R $^{3}$ LIVE++ to achieve robust and accurate state estimation while simultaneously reconstructing the radiance map on the fly. R $^{3}$ LIVE++ consists of a LiDAR-inertial odometry (LIO) and a visual-inertial odometry (VIO), both running in real-time. The LIO subsystem utilizes the measurements from a LiDAR for reconstructing the geometric structure, while the VIO subsystem simultaneously recovers the radiance information of the geometric structure from the input images. R $^{3}$ LIVE++ is developed based on R $^{3}$ LIVE and further improves the accuracy in localization and mapping by accounting for the camera photometric calibration and the online estimation of camera exposure time. We conduct more extensive experiments on public and self-collected datasets to compare our proposed system against other state-of-the-art SLAM systems. Quantitative and qualitative results show that R $^{3}$ LIVE++ has significant improvements over others in both accuracy and robustness. Moreover, to demonstrate the extendability of R $^{3}$ LIVE++, we developed several applications based on our reconstructed maps, such as high dynamic range (HDR) imaging, virtual environment exploration, and 3D video gaming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
r $^{3}$ live++:带有紧密耦合的激光雷达-惯性-视觉状态估计器的鲁棒、实时、辐射重构软件包
这项研究提出了一个称为R$^{3}$LIVE++的激光雷达-惯性-视觉融合框架,以实现稳健而准确的状态估计,同时在飞行中重建辐射图。R$^{3}$LIVE++ 由实时运行的激光雷达-惯性里程计(LIO)和视觉-惯性里程计(VIO)组成。LIO 子系统利用激光雷达的测量数据重建几何结构,而 VIO 子系统则同时从输入图像中恢复几何结构的辐射信息。R$^{3}$LIVE++ 是在 R$^{3}$LIVE 的基础上开发的,通过考虑相机光度校准和相机曝光时间的在线估计,进一步提高了定位和绘图的精度。我们在公共数据集和自收集数据集上进行了更广泛的实验,将我们提出的系统与其他最先进的 SLAM 系统进行比较。定量和定性结果表明,R$^{3}$LIVE++ 在准确性和鲁棒性方面都比其他系统有显著提高。此外,为了证明R$^{3}$LIVE++的可扩展性,我们基于重建的地图开发了多个应用,如高动态范围(HDR)成像、虚拟环境探索和三维视频游戏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1