Class-Agnostic Repetitive Action Counting Using Wearable Devices.

Duc Duy Nguyen, Lam Thanh Nguyen, Yifeng Huang, Cuong Pham, Minh Hoai
{"title":"Class-Agnostic Repetitive Action Counting Using Wearable Devices.","authors":"Duc Duy Nguyen, Lam Thanh Nguyen, Yifeng Huang, Cuong Pham, Minh Hoai","doi":"10.1109/TPAMI.2025.3548131","DOIUrl":null,"url":null,"abstract":"<p><p>We present Class-agnostic Repetitive action Counting (CaRaCount), a novel approach to count repetitive human actions in the wild using wearable devices time series data. CaRaCount is the first few-shot class-agnostic method, being able to count repetitions of any action class with only a short exemplar data sequence containing a few examples from the action class of interest. To develop and evaluate this method, we collect a large-scale time series dataset of repetitive human actions in various context, containing smartwatch data from 10 subjects performing 50 different activities. Experiments on this dataset and three other activity counting datasets namely Crossfit, Recofit, and MM-Fit show that CaRaCount can count repetitive actions with low error, and it outperforms other baselines and state-of-the-art action counting methods. Finally, with a user experience study, we evaluate the usability of our real-time implementation. Our results highlight the efficiency and effectiveness of our approach when deployed outside the laboratory environments.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3548131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present Class-agnostic Repetitive action Counting (CaRaCount), a novel approach to count repetitive human actions in the wild using wearable devices time series data. CaRaCount is the first few-shot class-agnostic method, being able to count repetitions of any action class with only a short exemplar data sequence containing a few examples from the action class of interest. To develop and evaluate this method, we collect a large-scale time series dataset of repetitive human actions in various context, containing smartwatch data from 10 subjects performing 50 different activities. Experiments on this dataset and three other activity counting datasets namely Crossfit, Recofit, and MM-Fit show that CaRaCount can count repetitive actions with low error, and it outperforms other baselines and state-of-the-art action counting methods. Finally, with a user experience study, we evaluate the usability of our real-time implementation. Our results highlight the efficiency and effectiveness of our approach when deployed outside the laboratory environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1