Rate-Distortion Theory in Coding for Machines and its Applications.

Alon Harell, Yalda Foroutan, Nilesh Ahuja, Parual Datta, Bhavya Kanzariya, V Srinivasa Somayazulu, Omesh Tickoo, Anderson de Andrade, Ivan V Bajic
{"title":"Rate-Distortion Theory in Coding for Machines and its Applications.","authors":"Alon Harell, Yalda Foroutan, Nilesh Ahuja, Parual Datta, Bhavya Kanzariya, V Srinivasa Somayazulu, Omesh Tickoo, Anderson de Andrade, Ivan V Bajic","doi":"10.1109/TPAMI.2025.3548516","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen a tremendous growth in both the capability and popularity of automatic machine analysis of media, especially images and video. As a result, a growing need for efficient compression methods optimised for machine vision, rather than human vision, has emerged. To meet this growing demand, significant developments have been made in image and video coding for machines. Unfortunately, while there is a substantial body of knowledge regarding rate-distortion theory for human vision, the same cannot be said of machine analysis. In this paper, we greatly extend the current rate-distortion theory for machines, providing insight into important design considerations of machine-vision codecs. We then utilise this newfound understanding to improve several methods for learned image coding for machines. Our proposed methods achieve state-of-the-art rate-distortion performance on several computer vision tasks - classification, instance and semantic segmentation, and object detection.</p>","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPAMI.2025.3548516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen a tremendous growth in both the capability and popularity of automatic machine analysis of media, especially images and video. As a result, a growing need for efficient compression methods optimised for machine vision, rather than human vision, has emerged. To meet this growing demand, significant developments have been made in image and video coding for machines. Unfortunately, while there is a substantial body of knowledge regarding rate-distortion theory for human vision, the same cannot be said of machine analysis. In this paper, we greatly extend the current rate-distortion theory for machines, providing insight into important design considerations of machine-vision codecs. We then utilise this newfound understanding to improve several methods for learned image coding for machines. Our proposed methods achieve state-of-the-art rate-distortion performance on several computer vision tasks - classification, instance and semantic segmentation, and object detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List* Rate-Distortion Theory in Coding for Machines and its Applications. Visible-Thermal Tiny Object Detection: A Benchmark Dataset and Baselines. Class-Agnostic Repetitive Action Counting Using Wearable Devices. On the Upper Bounds of Number of Linear Regions and Generalization Error of Deep Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1