Rational design of short-chain dehydrogenase/reductase for enantio-complementary synthesis of chiral 1,2-diols by successive hydroxymethylation and reduction of aldehydes
Xiu-Xin Ren, Bing-Mei Su, Xin-Qi Xu, Lian Xu, Juan Lin
{"title":"Rational design of short-chain dehydrogenase/reductase for enantio-complementary synthesis of chiral 1,2-diols by successive hydroxymethylation and reduction of aldehydes","authors":"Xiu-Xin Ren, Bing-Mei Su, Xin-Qi Xu, Lian Xu, Juan Lin","doi":"10.1002/bit.28841","DOIUrl":null,"url":null,"abstract":"<p>Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from <i>Sphingobium sp</i>. combined with a pair of tailored-made short-chain dehydrogenase/reductase from <i>Pseudomonas monteilii</i> (PmSDR-MuR and PmSDR-MuS) capable of producing (<i>R</i>)- and (<i>S</i>)-1-phenylethane-1,2-diol with 99% <i>ee</i>. The planned biocatalytic cascade could synthesize a series of enantiopure 1,2-diols with a broad scope (16 samples), excellent conversions (94%–99%), and outstanding enantioselectivity (up to 99% <i>ee</i>), making it an effective technique for producing chiral 1,2-diols in a more environmentally friendly and sustainable manner.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3796-3807"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28841","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enantiopure 1,2-diols are widely used in the production of pharmaceuticals, cosmetics, and functional materials as essential building blocks or bioactive compounds. Nevertheless, developing a mild, efficient and environmentally friendly biocatalytic route for manufacturing enantiopure 1,2-diols from simple substrate remains a challenge. Here, we designed and realized a step-wise biocatalytic cascade to access chiral 1,2-diols starting from aromatic aldehyde and formaldehyde enabled by a newly mined benzaldehyde lyase from Sphingobium sp. combined with a pair of tailored-made short-chain dehydrogenase/reductase from Pseudomonas monteilii (PmSDR-MuR and PmSDR-MuS) capable of producing (R)- and (S)-1-phenylethane-1,2-diol with 99% ee. The planned biocatalytic cascade could synthesize a series of enantiopure 1,2-diols with a broad scope (16 samples), excellent conversions (94%–99%), and outstanding enantioselectivity (up to 99% ee), making it an effective technique for producing chiral 1,2-diols in a more environmentally friendly and sustainable manner.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.