Emulsions that store oxygen for fast ORR kinetics and multifunctional robotic and mobility systems

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-11-06 DOI:10.1016/j.matt.2024.08.010
Alissa C. Johnson , Alice S. Fontaine , Emily A. Beeman , William J. Townsend , James H. Pikul
{"title":"Emulsions that store oxygen for fast ORR kinetics and multifunctional robotic and mobility systems","authors":"Alissa C. Johnson ,&nbsp;Alice S. Fontaine ,&nbsp;Emily A. Beeman ,&nbsp;William J. Townsend ,&nbsp;James H. Pikul","doi":"10.1016/j.matt.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><div>Human circulatory systems store large concentrations of oxygen and provide it continuously and simultaneously to trillions of cells without the need for each cell to access the surrounding environment. Inspired by biological circulatory systems, we envision future robotic systems with multifunctional, fully integrated, air-rechargeable energy delivery and storage. We present an aqueous air catholyte emulsion (ACE) with high oxygen solubility that can derive energy entirely from dissolved oxygen. With only 20% silicone oil by volume, ACEs can store twice as much dissolved oxygen (15 mg/L) as pure KOH samples, remain stable for several months, and show superior oxygen reduction reaction kinetics compared to KOH. Zinc-air flow cells with fully submerged electrodes can achieve 4.6 mW/cm<sup>2</sup> at 5.6 mA/cm<sup>2</sup>. A multifunctional actuator flow cell configuration employs an ACE as both a hydraulic actuator and an energy storage fluid, demonstrating the feasibility of ACEs as multifunctional, flexible power sources for soft robotic systems.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 11","pages":"Pages 4059-4075"},"PeriodicalIF":17.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524004417","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Human circulatory systems store large concentrations of oxygen and provide it continuously and simultaneously to trillions of cells without the need for each cell to access the surrounding environment. Inspired by biological circulatory systems, we envision future robotic systems with multifunctional, fully integrated, air-rechargeable energy delivery and storage. We present an aqueous air catholyte emulsion (ACE) with high oxygen solubility that can derive energy entirely from dissolved oxygen. With only 20% silicone oil by volume, ACEs can store twice as much dissolved oxygen (15 mg/L) as pure KOH samples, remain stable for several months, and show superior oxygen reduction reaction kinetics compared to KOH. Zinc-air flow cells with fully submerged electrodes can achieve 4.6 mW/cm2 at 5.6 mA/cm2. A multifunctional actuator flow cell configuration employs an ACE as both a hydraulic actuator and an energy storage fluid, demonstrating the feasibility of ACEs as multifunctional, flexible power sources for soft robotic systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速 ORR 动力学和多功能机器人与移动系统的储氧乳液
人体循环系统可储存高浓度的氧气,并持续、同步地向数以万亿计的细胞提供氧气,而每个细胞都无需接触周围环境。受生物循环系统的启发,我们设想未来的机器人系统将具备多功能、完全集成、可充电的空气能量输送和储存系统。我们提出了一种具有高氧气溶解度的水性空气阴离子乳液(ACE),它可以完全从溶解氧中获取能量。与纯 KOH 样品相比,ACE 的硅油含量仅为 20%,其溶解氧储存量是纯 KOH 样品的两倍(15 毫克/升),可保持稳定数月,并显示出更优越的氧还原反应动力学。完全浸没电极的锌-空气流动池可以在 5.6 mA/cm2 的条件下达到 4.6 mW/cm2。一种多功能致动器流动电池配置将 ACE 同时用作液压致动器和储能流体,证明了 ACE 作为软机器人系统多功能、灵活电源的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle Soft bio-metamaterials with high acoustic transparency and gradient refractive index for tunable acoustic beamformer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1