GAN-HA: A generative adversarial network with a novel heterogeneous dual-discriminator network and a new attention-based fusion strategy for infrared and visible image fusion
{"title":"GAN-HA: A generative adversarial network with a novel heterogeneous dual-discriminator network and a new attention-based fusion strategy for infrared and visible image fusion","authors":"","doi":"10.1016/j.infrared.2024.105548","DOIUrl":null,"url":null,"abstract":"<div><p>Infrared and visible image fusion (IVIF) aims to preserve thermal radiation information from infrared images while integrating texture details from visible images. Thermal radiation information is mainly expressed through image intensities, while texture details are typically expressed through image gradients. However, existing dual-discriminator generative adversarial networks (GANs) often rely on two structurally identical discriminators for learning, which do not fully account for the distinct learning needs of infrared and visible image information. To this end, this paper proposes a novel GAN with a heterogeneous dual-discriminator network and an attention-based fusion strategy (GAN-HA). Specifically, recognizing the intrinsic differences between infrared and visible images, we propose, for the first time, a novel heterogeneous dual-discriminator network to simultaneously capture thermal radiation information and texture details. The two discriminators in this network are structurally different, including a salient discriminator for infrared images and a detailed discriminator for visible images. They are able to learn rich image intensity information and image gradient information, respectively. In addition, a new attention-based fusion strategy is designed in the generator to appropriately emphasize the learned information from different source images, thereby improving the information representation ability of the fusion result. In this way, the fused images generated by GAN-HA can more effectively maintain both the salience of thermal targets and the sharpness of textures. Extensive experiments on various public datasets demonstrate the superiority of GAN-HA over other state-of-the-art (SOTA) algorithms while showcasing its higher potential for practical applications.</p></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449524004328","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared and visible image fusion (IVIF) aims to preserve thermal radiation information from infrared images while integrating texture details from visible images. Thermal radiation information is mainly expressed through image intensities, while texture details are typically expressed through image gradients. However, existing dual-discriminator generative adversarial networks (GANs) often rely on two structurally identical discriminators for learning, which do not fully account for the distinct learning needs of infrared and visible image information. To this end, this paper proposes a novel GAN with a heterogeneous dual-discriminator network and an attention-based fusion strategy (GAN-HA). Specifically, recognizing the intrinsic differences between infrared and visible images, we propose, for the first time, a novel heterogeneous dual-discriminator network to simultaneously capture thermal radiation information and texture details. The two discriminators in this network are structurally different, including a salient discriminator for infrared images and a detailed discriminator for visible images. They are able to learn rich image intensity information and image gradient information, respectively. In addition, a new attention-based fusion strategy is designed in the generator to appropriately emphasize the learned information from different source images, thereby improving the information representation ability of the fusion result. In this way, the fused images generated by GAN-HA can more effectively maintain both the salience of thermal targets and the sharpness of textures. Extensive experiments on various public datasets demonstrate the superiority of GAN-HA over other state-of-the-art (SOTA) algorithms while showcasing its higher potential for practical applications.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.