{"title":"Infrared small target detection based on isolated hyperedge","authors":"Xiao-ling Ge, Wei-xian Qian","doi":"10.1016/j.infrared.2025.105752","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting infrared small targets robustly in complex backgrounds is crucial for Infrared Search and Track (IRST) applications. However, high-intensity structures in the background, such as sharp edges, pose a challenging task, especially when the target has a low signal-to-noise ratio. We propose an Intuitionistic Fuzzy Hypergraph-based Target Detection method (IFHTD) to address this issue. IFHTD models the uncertainty of small target detection by intuitively fuzzifying the entire image at the pixel level. We define weighted intuitionistic fuzzy entropy as a membership function for target attributes in image blocks, thereby obtaining intuitionistic fuzzy sets for each image block vertex. Subsequently, the detection of infrared small targets is transformed into detecting regionally isolated hyperedges. Using intuitionistic fuzzy divergence distance metrics, we construct an intuitionistic fuzzy hypergraph for an image window. Isolated hyperedges are extracted from the centers of the image window using a predefined threshold. These isolated hyperedges are assigned weights to create a weighted graph, doubling as the infrared target’s saliency map. Experimental results demonstrate our algorithm’s robustness and effectiveness in practical infrared small target detection scenarios.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"146 ","pages":"Article 105752"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525000453","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting infrared small targets robustly in complex backgrounds is crucial for Infrared Search and Track (IRST) applications. However, high-intensity structures in the background, such as sharp edges, pose a challenging task, especially when the target has a low signal-to-noise ratio. We propose an Intuitionistic Fuzzy Hypergraph-based Target Detection method (IFHTD) to address this issue. IFHTD models the uncertainty of small target detection by intuitively fuzzifying the entire image at the pixel level. We define weighted intuitionistic fuzzy entropy as a membership function for target attributes in image blocks, thereby obtaining intuitionistic fuzzy sets for each image block vertex. Subsequently, the detection of infrared small targets is transformed into detecting regionally isolated hyperedges. Using intuitionistic fuzzy divergence distance metrics, we construct an intuitionistic fuzzy hypergraph for an image window. Isolated hyperedges are extracted from the centers of the image window using a predefined threshold. These isolated hyperedges are assigned weights to create a weighted graph, doubling as the infrared target’s saliency map. Experimental results demonstrate our algorithm’s robustness and effectiveness in practical infrared small target detection scenarios.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.