Junhwan Kim , Mahadi Hasan , Xinyu Liao , Tian Ding , Juhee Ahn
{"title":"Combined antimicrobial activity of short peptide and phage-derived endolysin against antibiotic-resistant Salmonella Typhimurium","authors":"Junhwan Kim , Mahadi Hasan , Xinyu Liao , Tian Ding , Juhee Ahn","doi":"10.1016/j.fm.2024.104642","DOIUrl":null,"url":null,"abstract":"<div><p>This study was designed to evaluate the combination effects of antimicrobial peptides (FK13 and FK16) and phage-encoded endolysin (LysPB32) on the inhibition of growth of polymyxin B-resistant <em>Salmonella</em> Typhimurium ATCC 19585 (ST<sup>PMB</sup>). The inhibitory effects of FK13, FK16, and LysPB32 against ST<sup>PMB</sup> were evaluated by using antimicrobial susceptibility, membrane permeability, biofilm reduction, cross-resistance, and mutant frequency assay. The minimum inhibitory concentrations (MICs) of FK13 and FK16 treated with LysPB32 (FK13+LysPB32 and FK16+LysPB32) against ST<sup>PMB</sup> were decreased from more than 512 to 128 μg/ml and from 64 to 32 μg/ml, respectively. Compared to the control, the number of ST<sup>PMB</sup> in the growing culture was reduced by 4.2 and 5.2 log CFU/ml, respectively, for FK13+LysPB32 and FK16+LysPB32 after 12-h incubation at 37 °C. All treatments (FK13, FK16, FK13+LysPB32, FK16+LysPB32) significantly increased the permeability of the outer membrane of ST<sup>PMB</sup>. Biofilms were significantly decreased from OD<sub>600</sub> of 0.6 to 0.16 for FK13+LysPB32 and from 0.6 to 0.13 for FK16+LysPB32. The ratios of MICs of erythromycin, ceftriaxone, polymyxin B, and ciprofloxacin to MIC of the control against ST<sup>PMB</sup> were decreased to 0.50 for FK13+LysPB32 and FK16+LysPB32. The bactericidal activities of amikacin and gentamicin were enhanced for FK13+LysPB32 and FK16+LysPB32 (2-fold < MBC/MIC ratio). The mutant frequencies of ST<sup>PMB</sup> to antibiotics were decreased when treated with FK13+LysPB32 and FK16+LysPB32. The results suggest that the combination of antimicrobial peptides and endolysins can be a promising strategy to control polymyxin B-resistant <em>S.</em> Typhimurium.</p></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"125 ","pages":"Article 104642"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002024001801","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to evaluate the combination effects of antimicrobial peptides (FK13 and FK16) and phage-encoded endolysin (LysPB32) on the inhibition of growth of polymyxin B-resistant Salmonella Typhimurium ATCC 19585 (STPMB). The inhibitory effects of FK13, FK16, and LysPB32 against STPMB were evaluated by using antimicrobial susceptibility, membrane permeability, biofilm reduction, cross-resistance, and mutant frequency assay. The minimum inhibitory concentrations (MICs) of FK13 and FK16 treated with LysPB32 (FK13+LysPB32 and FK16+LysPB32) against STPMB were decreased from more than 512 to 128 μg/ml and from 64 to 32 μg/ml, respectively. Compared to the control, the number of STPMB in the growing culture was reduced by 4.2 and 5.2 log CFU/ml, respectively, for FK13+LysPB32 and FK16+LysPB32 after 12-h incubation at 37 °C. All treatments (FK13, FK16, FK13+LysPB32, FK16+LysPB32) significantly increased the permeability of the outer membrane of STPMB. Biofilms were significantly decreased from OD600 of 0.6 to 0.16 for FK13+LysPB32 and from 0.6 to 0.13 for FK16+LysPB32. The ratios of MICs of erythromycin, ceftriaxone, polymyxin B, and ciprofloxacin to MIC of the control against STPMB were decreased to 0.50 for FK13+LysPB32 and FK16+LysPB32. The bactericidal activities of amikacin and gentamicin were enhanced for FK13+LysPB32 and FK16+LysPB32 (2-fold < MBC/MIC ratio). The mutant frequencies of STPMB to antibiotics were decreased when treated with FK13+LysPB32 and FK16+LysPB32. The results suggest that the combination of antimicrobial peptides and endolysins can be a promising strategy to control polymyxin B-resistant S. Typhimurium.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.