Ke Han , Wen Ji , Yu (Marco) Nie , Zhexian Li , Shenglin Liu
{"title":"Exploring the sensing power of mixed vehicle fleets","authors":"Ke Han , Wen Ji , Yu (Marco) Nie , Zhexian Li , Shenglin Liu","doi":"10.1016/j.trb.2024.103066","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle-based mobile sensing, also known as drive-by sensing, efficiently surveys urban environments at low costs by leveraging the mobility of urban vehicles. While recent studies have focused on drive-by sensing for fleets of a single type, our work explores the sensing power and cost-effectiveness of a mixed fleet that consists of vehicles with distinct and complementary mobility patterns. We formulate the drive-by sensing coverage (DSC) problem, proposing a method to quantify sensing utility and an optimization procedure that determines fleet composition, sensor allocation, and vehicle routing for a given budget. Our air quality sensing case study in Longquanyi District (Chengdu, China) demonstrates that using a mixed fleet enhances sensing utilities and achieves close approximations to the target sensing distribution at a lower cost. Generalizing these insights to two additional real-world networks, our regression analysis uncovers key factors influencing the sensing power of mixed fleets. This research provides quantitative and managerial insights into drive-by sensing, showcasing a positive externality of urban transport activities.</p></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"190 ","pages":"Article 103066"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261524001905","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle-based mobile sensing, also known as drive-by sensing, efficiently surveys urban environments at low costs by leveraging the mobility of urban vehicles. While recent studies have focused on drive-by sensing for fleets of a single type, our work explores the sensing power and cost-effectiveness of a mixed fleet that consists of vehicles with distinct and complementary mobility patterns. We formulate the drive-by sensing coverage (DSC) problem, proposing a method to quantify sensing utility and an optimization procedure that determines fleet composition, sensor allocation, and vehicle routing for a given budget. Our air quality sensing case study in Longquanyi District (Chengdu, China) demonstrates that using a mixed fleet enhances sensing utilities and achieves close approximations to the target sensing distribution at a lower cost. Generalizing these insights to two additional real-world networks, our regression analysis uncovers key factors influencing the sensing power of mixed fleets. This research provides quantitative and managerial insights into drive-by sensing, showcasing a positive externality of urban transport activities.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.