Improving inferential analyses predata and postdata.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-09-09 DOI:10.1037/met0000697
David Trafimow,Tingting Tong,Tonghui Wang,S T Boris Choy,Liqun Hu,Xiangfei Chen,Cong Wang,Ziyuan Wang
{"title":"Improving inferential analyses predata and postdata.","authors":"David Trafimow,Tingting Tong,Tonghui Wang,S T Boris Choy,Liqun Hu,Xiangfei Chen,Cong Wang,Ziyuan Wang","doi":"10.1037/met0000697","DOIUrl":null,"url":null,"abstract":"The standard statistical procedure for researchers comprises a two-step process. Before data collection, researchers perform power analyses, and after data collection, they perform significance tests. Many have proffered arguments that significance tests are unsound, but that issue will not be rehashed here. It is sufficient that even for aficionados, there is the usual disclaimer that null hypothesis significance tests provide extremely limited information, thereby rendering them vulnerable to misuse. There is a much better postdata option that provides a higher grade of useful information. Based on work by Trafimow and his colleagues (for a review, see Trafimow, 2023a), it is possible to estimate probabilities of being better off or worse off, by varying degrees, depending on whether one gets the treatment or not. In turn, if the postdata goal switches from significance testing to a concern with probabilistic advantages or disadvantages, an implication is that the predata goal ought to switch accordingly. The a priori procedure, with its focus on parameter estimation, should replace conventional power analysis as a predata procedure. Therefore, the new two-step procedure should be the a priori procedure predata and estimations of probabilities of being better off, or worse off, to varying degrees, postdata. (PsycInfo Database Record (c) 2024 APA, all rights reserved).","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"104 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000697","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The standard statistical procedure for researchers comprises a two-step process. Before data collection, researchers perform power analyses, and after data collection, they perform significance tests. Many have proffered arguments that significance tests are unsound, but that issue will not be rehashed here. It is sufficient that even for aficionados, there is the usual disclaimer that null hypothesis significance tests provide extremely limited information, thereby rendering them vulnerable to misuse. There is a much better postdata option that provides a higher grade of useful information. Based on work by Trafimow and his colleagues (for a review, see Trafimow, 2023a), it is possible to estimate probabilities of being better off or worse off, by varying degrees, depending on whether one gets the treatment or not. In turn, if the postdata goal switches from significance testing to a concern with probabilistic advantages or disadvantages, an implication is that the predata goal ought to switch accordingly. The a priori procedure, with its focus on parameter estimation, should replace conventional power analysis as a predata procedure. Therefore, the new two-step procedure should be the a priori procedure predata and estimations of probabilities of being better off, or worse off, to varying degrees, postdata. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进推理分析的前数据和后数据。
研究人员的标准统计程序包括两个步骤。在收集数据之前,研究人员会进行功率分析;在收集数据之后,他们会进行显著性检验。很多人都提出了显著性检验不可靠的论点,在此不再赘述。即使对研究爱好者来说,通常也会有这样的免责声明:零假设显著性检验提供的信息极其有限,因此容易被滥用。还有一个更好的后数据选项,可以提供更高级别的有用信息。根据 Trafimow 及其同事的研究(综述见 Trafimow, 2023a),我们可以根据一个人是否接受治疗,估算出不同程度的更好或更差的概率。反过来,如果后数据目标从显著性检验转向对概率优势或劣势的关注,那么就意味着前数据目标也应相应转换。以参数估计为重点的先验程序应取代传统的功率分析,成为数据前程序。因此,新的两步程序应该是先验程序的前数据和对不同程度的更好或更差概率的估计,即后数据。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
A guided tutorial on linear mixed-effects models for the analysis of accuracies and response times in experiments with fully crossed design. Bayes factors for logistic (mixed-effect) models. Better power by design: Permuted-subblock randomization boosts power in repeated-measures experiments. Building a simpler moderated nonlinear factor analysis model with Markov Chain Monte Carlo estimation. Definition and identification of causal ratio effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1