Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection

IF 2.6 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Analytical biochemistry Pub Date : 2024-09-10 DOI:10.1016/j.ab.2024.115660
Chandan Saha , Sarit K. Ghosh , Pooja Kumari , Venkata K. Perla , Harishchandra Singh , Kaushik Mallick
{"title":"Electrocatalytic efficiency of carbon nitride supported gold nanoparticle based sensor for iodide and cysteine detection","authors":"Chandan Saha ,&nbsp;Sarit K. Ghosh ,&nbsp;Pooja Kumari ,&nbsp;Venkata K. Perla ,&nbsp;Harishchandra Singh ,&nbsp;Kaushik Mallick","doi":"10.1016/j.ab.2024.115660","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au–CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5–15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and <span>l</span>-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻<sup>1</sup>cm⁻<sup>2</sup>, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻<sup>1</sup>cm⁻<sup>2</sup>, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au–CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.</p></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"696 ","pages":"Article 115660"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive investigations are being conducted on gold nanoparticles focusing on their applications in biosensors, laser phototherapy, targeted drug delivery and bioimaging utilizing advanced detection techniques. In this work, an electrochemical sensor was developed based on graphite carbon nitride supported gold nanoparticles. Carbon nitride supported gold nanoparticles (Au–CN) was synthesized by applying a deposition-precipitation route followed by a chemical reduction technique. The composite system was characterized by X-ray diffraction and X-ray photo electron spectroscopy methods. Electron microscopy analysis confirmed the formation of gold nanoparticles within the size range of 5–15 nm on the carbon nitride support. Carbon nitride supported gold based sensor was employed for the electrochemical detection of iodide ion and l-cysteine. The limit of detection and sensitivity of the sensor was attained 8.9 μM and 0.96 μAμM⁻1cm⁻2, respectively, for iodide ion, while 0.48 μM and 5.8 μAμM⁻1cm⁻2, respectively, was achieved for the recognition of cysteine. Furthermore, a paper-based electrochemical device was developed using the Au–CN hybrid system that exhibited promising results in detecting iodide ions, highlighting its potential for economic and portable device applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于氮化碳支撑金纳米粒子的碘化物和半胱氨酸检测传感器的电催化效率
目前正在对金纳米粒子进行广泛的研究,重点是利用先进的检测技术将其应用于生物传感器、激光光疗、靶向给药和生物成像。在这项工作中,开发了一种基于氮化石墨支撑金纳米粒子的电化学传感器。氮化石墨支撑的金纳米粒子(Au-CN)是通过沉积-沉淀路线和化学还原技术合成的。该复合体系通过 X 射线衍射和 X 射线光电子能谱方法进行了表征。电子显微镜分析证实,在氮化碳支持物上形成了尺寸范围为 5-15 纳米的金纳米粒子。氮化碳支持的金基传感器被用于电化学检测碘离子和 l-半胱氨酸。传感器对碘离子的检测限和灵敏度分别达到了 8.9 μM 和 0.96 μAμM-1cm-2,对半胱氨酸的识别限和灵敏度分别达到了 0.48 μM 和 5.8 μAμM-1cm-2。此外,还利用 Au-CN 混合系统开发了一种纸基电化学装置,该装置在检测碘离子方面表现出良好的效果,凸显了其在经济和便携式装置应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical biochemistry
Analytical biochemistry 生物-分析化学
CiteScore
5.70
自引率
0.00%
发文量
283
审稿时长
44 days
期刊介绍: The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field. The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology. The journal has been particularly active in: -Analytical techniques for biological molecules- Aptamer selection and utilization- Biosensors- Chromatography- Cloning, sequencing and mutagenesis- Electrochemical methods- Electrophoresis- Enzyme characterization methods- Immunological approaches- Mass spectrometry of proteins and nucleic acids- Metabolomics- Nano level techniques- Optical spectroscopy in all its forms. The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.
期刊最新文献
A biocompatible fluorescent probe for endogenous hydrogen sulfide detection and imaging A novel colorimetric assay for the detection of urinary N1, N12-diacetylspermine, a known biomarker for colorectal cancer Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo Development of an assay to quantify tranexamic acid levels in plasma Optimization of a high throughput screening platform to identify inhibitors of asymmetric diadenosine polyphosphatases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1